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Abstract: Nonlinear projective transformation provides the exact number of desired parameters to account for all possi-
ble camera motions thus making its use a natural choice in image alignment problems. Moreover, the ability of
an alignment algorithm to quickly and accurately estimate the parameter values of the geometric transforma-
tion even in cases of over-modelling of the warping process constitutes a basic requirement for many computer
vision applications. In this paper the appropriateness of the Enhanced Correlation Coefficient (ECC) function
as a performance criterion in the projective image registration problem is investigated. Since this measure is a
highly nonlinear function of the warp parameters, its maximization by using an iterative technique is achieved.
The main theoretical results concerning the nonlinear optimization problem and an efficient approximation
leads to an optimal closed form solution (per iteration) are presented. The performance of the iterative algo-
rithm is compared against the well known Lucas-Kanade algorithm through a series of experiments involving
strong or weak geometric deformations, ideal and noisy conditions and even over-modelling of the warping
process. In all cases ECC based algorithm exhibits a better behavior in speed, as well as in the probability of
convergence as compared to the Lucas-Kanade scheme.

1 INTRODUCTION

The image alignment problem can be seen as a map-
ping between the coordinates systems of two or more
images, therefore the first step towards its solution
is the choice of an appropriate geometric transfor-
mation that adequately models this mapping. Eight-
parameters projective transformation provides the ex-
act number of desired parameters to account for all
possible camera motions, therefore its use in the para-
metric image alignment problem is considered as the
most natural choice. This class of transformations and
in particular several of its subclasses as affine, simil-
itude transformations and pure translation have been
in the center of attention in many applications (Fuh
and Maragos, 1991; Gleicher, 1997; Hager and Bel-
humeur, 1998; Baker and Matthews, 2004; Szeliski,
2006).

Once the parametric transformation has been de-
fined the alignment problem reduces into a parame-
ter estimation problem. Therefore, the second crit-

ical step towards its solution is the definition of an
appropriate objective function. Most existing tech-
niques adopt measures which are lp based norms
of the error between either the whole image pro-
files (pixel-based techniques) or specific feature of
image profiles (feature-based techniques) (Szeliski,
2005), with the l2 norm being by far the most widely
used (Horn and Schunk, 1981; Lucas and Kanade,
1981; Anandan, 1989; Fuh and Maragos, 1991; Black
and Anandan, 1993; Hager and Belhumeur, 1998;
Shum and Szeliski, 2000; Baker and Matthews, 2004;
Szeliski, 2006; Altunbasak et al., 2003; Evangelidis
and Psarakis, 2007).

Independently of the used measure, for the opti-
mum estimation of the parameters most of the exist-
ing pixel-based techniques require the use of gradient
based iterative optimization techniques. However, the
choice of the measure, the form of the alternative ex-
pression that approximates the original nonlinear ob-
jective function in each iteration of the alignment al-
gorithm and the number of the parameters to be es-



timated, affect its accuracy, speed and probability of
convergency as well as its robustness against possible
photometric distortions.

In this paper the appropriateness of Enhanced Cor-
relation Coefficient as a performance criterion (Evan-
gelidis and Psarakis, 2007) for the eight-parameters
nonlinear projective registration problem is inves-
tigated. Since the measure is a highly nonlinear
function of the warp parameters, its maximization
is achieved by using an iterative technique. The
main theoretical results concerning the nonlinear opti-
mization problem and an efficient approximation that
leads to an optimal closed form solution (per itera-
tion) are presented. The performance of the algorithm
is compared against the well known Lucas-Kanade
algorithm with the help of a series of experiments.
Specifically we investigate the appropriateness of the
competing algorithms in projective registration, when
their input is a pair of manually unregistered images.
These images have been obtained via a projective
(modelling) or an affine (over-modelling) deforma-
tion. Noise free or noisy images are used as data sets
in experiments.

The remainder of this paper is organized as fol-
lows. In Section 2, we formulate the parametric im-
age alignment problem. In Section 3, the ECC based
nonlinear optimization problem is defined; the iter-
ative alignment algorithm and a closed form optimal
solution of the basic (per iteration) optimization prob-
lem are given. In Section 4, we apply the ECC based
technique in a number of experiments and a detailed
comparison of our algorithm with the Lucas-Kanade
alignment scheme is provided. Finally, Section 5 con-
tains our conclusions.

2 Problem Formulation

In this section we formulate the problem of alignment
of two image profiles. Let us assume that a refer-
ence image Ir(x) and a warped image Iw(x′) are given,
where x = [x,y] and x′ = [x′,y′] denote image coordi-
nates. Suppose also that we are given a set of coordi-
nates S = {xi| i = 1, . . . , K} in the reference image,
which is called target area. Then, the alignment prob-
lem consists in finding the corresponding coordinate
set in the warped image.

By considering that a transformation model
T (x;p) where p = (p1, p2, . . . , pN)t is a vector of un-
known parameters is given, the alignment problem is
reduced to the problem of estimating the parameter
vector p such that

Ir(x) = Ψ(Iw(T (x;p));α), x ∈ S , (1)

where transformation Ψ(I,α) which is parameterized
by a vector α, accounts for possible photometric dis-
tortions that violate the brightness constancy assump-
tion, a case which arises in real applications due to
different viewing directions and/or different illumina-
tion conditions.

The goal of most existing algorithms is the mini-
mization of the dissimilarity of the two image profiles,
providing the optimum parameter values. Dissimilar-
ity is usually expressed through an objective function
E(p,α) which involves the lp norm of the intensity
residual of the image profiles. A typical minimization
problem has the following form

min
p,α

E(p,α) = min
p,α ∑

x∈S
|Ir(x)−Ψ(Iw(T (x;p)),α) |p.

(2)
Solving the above defined problem is not a simple
task because of the nonlinearity involved in the cor-
respondence part. Computational complexity and es-
timation quality of existing schemes depends on the
specific lp norm and the models used for warping and
photometric distortion. As far as the norm power p is
concerned most methods use p = 2 (Euclidean norm).
This will also be the case in the approach we briefly
present in the next section.

3 The Alignment Algorithm

It is more convenient at this point to define the refer-
ence vector ir and the warped vector iw(p) as follows

ir =




Ir(x1)
Ir(x2)

...
Ir(xK)


 , iw(p) =




Iw(T (x1;p))
Iw(T (x2;p))

...
Iw(T (xK ;p))


 (3)

and denote by īr and īw(p) the zero-mean versions
of the reference and warped vector respectively. We
then propose the following l2 based criterion to quan-
tify the applicability of T (x;p) in alignment of ir with
iw(p) as a function of p

EECC(p) =
∣∣∣∣
∣∣∣∣

īr
||īr||

− īw(p)
||īw(p)||

∣∣∣∣
∣∣∣∣
2

, (4)

where || · || denotes the usual Euclidean norm.
It is clear from (4) that this criterion is invariant to

possibly existing contrast and/or brightness changes
since involved vectors are zero-mean and normalized.
So, to a first approximation, we can concentrate on
the geometric transformation putting aside the photo-
metric one. These characteristics clearly support our
choice to adopt this criterion for the image alignment
problem.



3.1 A Nonlinear Maximization Problem

Since the residual in (4) is based on zero-mean and
normalized vectors, it is straightforward to prove that
minimizing EECC(p) is equivalent to maximizing the
enhanced correlation coefficient (Psarakis and Evan-
gelidis, 2005)

ρ(p) = îtr
īw(p)
||īw(p)|| (5)

where îr is the normalized reference vector. Notice
that even if īw(p) depends linearly on the parameter
vector p, the resulting objective function is still non-
linear with respect to p due to the normalization of the
warped vector. This of course suggests that its maxi-
mization requires nonlinear optimization techniques.

In order to maximize ρ(p) we are going to use
a gradient-based iterative approach. More specifi-
cally, we are going to replace the original optimiza-
tion problem by a sequence of secondary optimiza-
tions. Each such optimization relies on the outcome
of its predecessor thus generating a sequence of para-
meter estimates which hopefully converges to the de-
sired optimizing vector of the original problem. No-
tice that, at each iteration we do not have to optimize
the objective function, but an approximation to this
function, such that the resulting optimizer is simple
to compute. Let us therefore introduce the approxi-
mation we intend to apply to our objective function
and also derive an analytic expression for the solution
that maximizes it.

Suppose that p is “close” to some nominal para-
meter vector p̃ and write p = p̃ + ∆p, where ∆p de-
notes a vector of perturbation. Suppose also that the
intensity function Iw and the warping transformation
T are of sufficient smoothness to allow for the exis-
tence of the required partial derivatives. If we denote
as x̃′ = T (x; p̃) the warped coordinates under the nom-
inal parameter vector and x′ = T (x;p) under the per-
turbed, then, applying a first order Taylor expansion
with respect to the parameters, we can write

Iw(x′)≈ Iw(x̃′)+
[
∇x′ Iw(x̃′)

]t ∂T (x; p̃)
∂p

∆p, (6)

where ∇x′ Iw(x̃′) denotes the gradient vector of length
2 of the intensity function Iw(x′) of the warped image
evaluated at the nominal coordinates x̃′ and ∂T (x;p̃)

∂p the
size 2×N Jacobian matrix of the warp transform with
respect to its parameters, evaluated at the nominal val-
ues p̃.

By applying (6) to all points of target area S , form-
ing the linearized version of the warp vector iw(p)
and computing its zero mean counterpart we obtain

the following approximation ρ(∆p|p̃) of the objective
function ρ(p) defined in (5):

ρ(p)≈ ρ(∆p|p̃) =
îtr īw + îtrḠ∆p√

‖īw‖2 +2ītwḠ∆p+∆ptḠtḠ∆p
(7)

where Ḡ denotes the column-zero-mean counterpart
of the size K×N Jacobian matrix G(p̃) of the warped
intensity vector with respect to the parameters, evalu-
ated at the nominal parameter values p̃. Note that for
notational simplicity, the dependence of the warped
vectors on p has been dropped.

Although ρ(∆p|p̃) is a non-linear function of ∆p,
its maximization results in a closed-form solution.
This solution is given, without proof, by the next the-
orem (Evangelidis and Psarakis, 2007).

Theorem I: Consider the objective function de-
fined in (7) and the orthogonal projection matrix PG =
Ḡ(ḠtḠ)−1Ḡt of size K. Then, as far as the maximal
value of ρ(∆p|p̃) is concerned, we distinguish the fol-
lowing two cases:

Case îtr īw > îtrPG īw: here we have a maximum,
specifically

max
∆p

ρ(∆p|p̃) =

√
(îtr īw− îtrPG īw)2

‖īw‖2− ītwPG īw
+ îtrPG îr, (8)

which is attainable for the following optimal pertur-
bation

∆po = (ḠtḠ)−1Ḡt
{‖īw‖2− ītwPG īw

îtr īw− îtrPG īw
îr− īw

}
. (9)

Case îtr īw ≤ îtrPG īw: here we have a supremum,
specifically

sup
∆p

ρ(∆p|p̃) =
√

îtrPG îr, (10)

which can be approached arbitrarily close by select-
ing

∆po = (ḠtḠ)−1Ḡt {λîr− īw
}

, (11)

with λ a positive scalar, of sufficiently large value.
In order to be able to use the results of Theorem I

the positive quantity λ must be defined. It is clear that
λ must be selected so that the resulting ρ(∆po|p̃) sat-
isfies ρ(∆po|p̃) > ρ(0|p̃) and ρ(∆po|p̃)≥ 0. Possible
values of λ provide the following lemma (Evangelidis
and Psarakis, 2007).

Lemma I: Let îtr īw ≤ îtrPG īw and define the follow-
ing two values for λ

λ1 =

√
ītwPG īw
îtrPG îr

, λ2 =
îtrPG īw− îtr īw

îtrPG îr
. (12)



Then for λ≥ λ1 we have that ρ(∆po|p̃) > ρ(0|p̃); for
λ≥ λ2 that ρ(∆po|p̃)≥ 0; finally for λ≥max{λ1,λ2}
we have both inequalities valid.

Let us now translate the above results into an it-
erative scheme in order to obtain the solution to the
original nonlinear optimization problem.

To this end, let us assume that from iteration j−1
we have available the parameter estimate p j−1 and we
adopt the following additive rule

p j = p j−1 +∆p j. (13)

Then, using p j−1 we can compute īw(p j−1)
and Ḡ(p j−1) and optimize the approximation
ρ(∆p j|p j−1) with respect to ∆p j. The iterative
algorithm is summarized below.

Initialization

· Use Ir to compute îr defined in (3).

· Initialize p0 and set j = 1.

Iteration Steps

· Using T (x;p j−1) warp Iw and compute īw(p j−1)

· Using T (x;p j−1) warp the gradient ∇Iw of Iw and
compute the Jacobian matrix Ḡ(p j−1)

· Compare îtr īw with îtrPG īw and compute perturba-
tions ∆po

j either from (9) or using (11) and (12)

· Update parameter vector p j = p j−1 +∆po
j .

If ‖∆po
j‖ ≥ εp then, j ++ and repeat; else stop.

As it is indicated above, the algorithm is executed
until the norm of the perturbation vector ‖∆po

j‖ be-
comes smaller than a predefined threshold εp.

We must stress here that the choice of the initial
value of p0 is very critical for both the speed and
the probability of convergence of the proposed algo-
rithm. For example, in the specific case of partially
overlapped images or in a too strong geometric defor-
mation case (i.e. flip up-down), an appropriate value
of p0 helps the algorithm to avoid local maxima. A re-
liable estimation for the initialization of the algorithm
can be obtained by incorporating the above algorithm
with a correlation style search method (Shum and
Szeliski, 2000) or a landmark-based method (John-
son and Christensen, 2002). However, in this paper
we consider that the images have sufficient overlap.

The structure of the iterative algorithm is very
similar to the forward additive scheme of the Lucas-
Kanade (LK) algorithm (Lucas and Kanade, 1981),
one of the most frequently used algorithm for the im-
age alignment problem, but as we are going to see in
the next section, the proposed updating scheme im-
proves the performance significantly.

3.2 Parametric Models

In this work, to model the warping process we are
going to use the following eight-parameters projective
transformation (homography)

x′ = T (x;p) =
1
P

[
p1 p2 p3
p4 p5 p6

][
x
1

]
(14)

where P = p7x+ p8y+1 (P 6= 0). This class of trans-
formations is the most general class of the well known
2-D planar motion models that gives the exact number
of desired parameters to account for all the possible
camera motions.

For the Jacobian of the projective model we have

∂T (x;p)
∂p

=
1
P

[
x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y

]
,

(15)
where x′,y′ are the elements of vector x′.

As it is clear from (14), projective transformation
is a nonlinear function of its parameters and its stabil-
ity as well as the continuity of its Jacobian depends on
the values of the denominator P. To ensure its stabil-
ity and the existence of its Jacobian, we restrict our-
selves on admissible (Radke et al., 2000) estimations
of the transform. Note also that in spite of the affine
model which has a Jacobian that does not depend on
the warping parameters, projective model, as it is ob-
vious from (15), has a Jacobian that depends on the
parameters p and thus it must be updated on each it-
eration of the iterative algorithms. These drawbacks
can be overcome if we use approximated to projec-
tive transformation models as bilinear or polynomial
models. However in this case, the projective defor-
mation cannot be exactly adjusted and this approach
may lead to meaningless alignment results in a real
applications.

4 Simulation Results

In this section we are going to evaluate our algorithm
and compared it against the forward additive version
of the Lucas-Kanade algorithm (Lucas and Kanade,
1981), as it is implemented in (Baker and Matthews,
2004). We perform two sets of experiments. In both
sets, for the modelling of the warping process the
nonlinear projective transformation defined in (14) is
used, but in the first set of experiments the reference
image profiles are created using a nonlinear projective
transformation, while in the second set by using an
affine one. We must stress at this point that for all as-
pects affecting the simulation experiments, we made
an effort to stay exactly within the frame specified



in (Baker and Matthews, 2004). Before we present
our results we give some details for the experimen-
tal setup as well as the figures of merit we are going
to use in order to fairly compare the competing algo-
rithms.

4.1 Experimental Setup

The experimental setup is described analytically in
(Baker and Matthews, 2004). In brief, we consider
an image I(x) and we add point noise N (0,σ2

p) to
four canonical points inside the image plane thus cre-
ating a projective transformation pr between noisy
and original points (for affine distortion three points
are adequate). By applying this transformation to the
image we obtain a reference profile Ir = I(T (x : pr))
and starting from an initial transformation p0 (here
the identity warp) Iw = I(T (x : p0)) we try to estimate
pr through the alignment of Ir with Iw. Notice that σp
captures the strength of the geometric deformation.

The quality of the alignment at j-th iteration is ex-
pressed by the following error metric

e( j) =
1
8 ∑

x∈C
||T (x;pr)−T (x;p j)||2. (16)

where C is the set of coordinates of four canonical
points and p j is the current estimation of transforma-
tion. The alignment algorithm is considered as con-
verged if it achieves an error measure below than a
predefined threshold Tc at a prescribed maximal iter-
ation jmax, that is e( jmax)≤ Tc.

As first figure of merit we use the Mean Square
Distance (MSD) as a function of iteration num-
ber j, where MSD value is the arithmetic mean of
the sequence e( j) over all realizations (Baker and
Matthews, 2004). What differentiates these realiza-
tions is the reference profile we try to come near. Note
that this figure captures the learning ability of the al-
gorithm. The second figure of merit is the the percent-
age of converging (PoC) runs (Baker and Matthews,
2004). This quantity is the percentage of runs that
converge up to maximal iteration jmax, based again
on the above mentioned convergence criterion. PoC
is depicted as a function of the point deviation σp, the
most important factor that affects the performance of
the alignment algorithm.

Since it is natural to prefer an algorithm that con-
verges quickly with high probability, we propose a
third figure of merit that captures exactly this point
(Evangelidis and Psarakis, 2007). In other words we
propose the generation of a histogram depicting the
probability of successful convergence at each itera-
tion. Specifically a run of an algorithm on an im-
age pair realization will be considered as having con-
verged at iteration n when the squared error e( j) goes

below the threshold Tc for the first time at iteration
j = n. It is clear that we prefer a histogram to be con-
centrated over mostly small iteration-numbers.

In all experiments and for all figures of merit that
follow we use Tc = 1 pixel2.

4.2 Minimal Case

In this subsection we present the results we obtained
from the first set of experiments we have conducted.
As it is above described, in this case we create the ref-
erence profile by using a projective transform and we
model the warping process by using a transformation
of the same class.

4.2.1 Experiment I

In the first experiment, the alignment algorithms try to
compensate only the geometric distortion since this is
the only that has been applied to images. Specifically,
we use the “Takeo” image (Baker and Matthews,
2004) as input image and we create 500 different
reference profiles for each integer values of σp in
the range [1,10]. For each one of the 500 realiza-
tions, we permit the algorithms to make 15 iterations
( jmax = 15). Since no intensity noise is added to im-
age, we expect MSD to reach very low levels which
cannot be zero due to finite precision arithmetic.

Figure 1 depicts the relative performance of the
two algorithms. As we mentioned above, we present
the arithmetic mean of the sequence e( j) for those
realizations where both algorithms have converged.
Three cases are investigated; (a) σp = 2, (b) σp = 6
and (c) σp = 10. In all these cases our algorithm ex-
hibits a significantly smaller MSD which is order(s)
of magnitude better than the one obtained by the LK
scheme. Furthermore concerning the PoC, as we can
see from Figure 1.(d), our algorithm exhibits better
performance for all values of σp. Specifically for
strong deformations (σp = 10) the improvement can
become quite significant (18%).

As far as the probability of successful convergence
is concerned, we applied the algorithms for a maximal
number of 100 iterations ( jmax = 100). In Figure 2
the resulting graphs are shown. In order however, for
the differences to become visible, we present only the
first 50 bins of the histogram. Only the histograms
for the case of σp = 6 and σp = 10 are shown. As we
can clearly see the proposed algorithm has larger per-
centage of converged realizations in smaller iteration
numbers than the LK scheme.
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Figure 1: MSD in dB as a function of number of iterations;
(a) σp = 2, (b) σp = 6, (c) σp = 10. In (d), PoC as a function
of σp for jmax = 15.

4.2.2 Experiment II

In this experiment we repeat the previous procedure,
but now we add intensity noise to both images before
their alignment. Specifically, the standard deviation
of the noise we add into the images is equal to 8 gray
levels. Due to this noise, even theoretically the MSD
can no longer be equal to 0.

In Figure 3 the results we obtained are shown.
For the case of σp = 2 we observe that both algo-
rithms reach an MSD floor value, while in the other
two cases this is not visible. Note though that the pro-
posed algorithm outperforms the LK scheme by a half
or a full order of magnitude. Furthermore, the pro-
posed algorithm exhibits a larger PoC score confirm-
ing thus its superiority. Regarding the histograms, as
we can see from Figure 4, the resulting histograms are
very similar to the previous noise-free case with the
histograms of the proposed algorithm having a larger
percentage of converged realizations in smaller itera-
tion numbers than the LK scheme.
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Figure 2: Histograms of successful convergence as a func-
tion of number of iterations; (a) σp = 6, (b) σp = 10.
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Figure 3: MSD in dB as a function of number of iterations
for the noisy (8 gray levels) “Takeo” image; (a) σp = 2,
(b) σp = 6, (c) σp = 10. In (d), PoC as a function of σp for
jmax = 15.

4.3 Over-Modelling Case

In this subsection we examine the behavior of the
algorithms under the influence of over-modelling.
Specifically, we create the reference profiles by using
an affine transform, but we still model the warping
process by using a nonlinear projective transforma-
tion. Since six parameters are required for the affine
transform, the values of two more parameters (p7, p8)
must be estimated by the alignment algorithms. Ide-
ally these values must be equals to zero. Since we like
to evaluate the performance of the algorithms under
the influence of the over-modelling, we concentrate
ourselves on the realizations where both algorithms
are converged when the warping process is modelled
by an affine transformation. Then, we run the com-
peting algorithms on these common converged real-
izations, the converged realizations for each one in
the over-modelling case are counted, and the result-
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Figure 4: Histograms of successful convergence as a func-
tion of number of iterations for the noisy (8 gray levels)
“Takeo” image; (a) σp = 6, (b) σp = 10.



ing learning curves and PoC scores are presented. As
far as the probabilities of convergence are concerned,
as in the minimal case we applied the algorithms for
a maximum of 100 iterations and the resulting his-
tograms are also presented. For comparison purposes,
the learning curves as well as PoC scores obtained
from the affine modelling are superimposed on the
corresponding plots. As in the previous subsection
two experiments are conducted.

4.3.1 Experiment III

This experiment is very similar to Experiment I. As
we already mentioned, the basic difference is that the
reference profiles have been created by using affine
transformations instead of projective ones.

As it was expected (Figure 5), over-modelling de-
grades the performance of the estimation, affects PoC
score as well as the learning ability of the algorithms.
However, we observe that ECC algorithm seems to be
more robust in the over-modelling case than the LK
algorithm. Indeed, this is exactly the case if we take
into account the number of realizations in which each
algorithm has converged (the values appeared next to
each curve). For example, for the case of σp = 10
(Figure 5.(c)), in a total of 182 common “success-
fully” converged realizations under affine modelling
(Evangelidis and Psarakis, 2007), LK algorithm suc-
ceeded in aligning 95 profiles (52%), while ECC algo-
rithm 156 (86%). Figure 5.(d) depicts the algorithms
PoC as a function of σp for both cases. We observe
that the behavior of ECC algorithm is better as com-
pared to the LK scheme which exhibits a significant
degradation in its performance due to over-modelling.
In Figure 6 the obtained histograms are shown. As we
can see from Figure 6 the histograms resulting from
the proposed algorithm are more concentrated over
smaller iteration numbers than the histograms result-
ing from the LK scheme. This is more evident in Fig-
ure 6.(b) where the resulting histogram from the LK
scheme is almost uniformly spread over the range 5 to
30.

4.3.2 Experiment IV

The conditions of this experiment are similar to the
conditions of Experiments III, except the fact that we
try to align noisy images, where the standard devia-
tion of the additive noise is 8 gray levels. The ob-
tained simulation results are shown in Figure 7. As
in the previous experiments, ECC algorithm seems to
outperforms the LK scheme. As we can see from the
corresponding figures, ECC based algorithm has con-
verged in more realizations than LK algorithm has.
It is also worth noting from Figure 7.(d) where the
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Figure 5: Over-modelling case. MSD in dB as a function of
number of iterations; (a) σp = 2, (b) σp = 6, (c) σp = 10.
In (d), PoC as a function of σp for jmax = 15.
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Figure 6: Over-modelling case. Histograms of successful
convergence as a function of number of iterations; (a) σp =
6, (b) σp = 10.

PoC score is depicted, that the performance of ECC
algorithm in the over-modelling case almost coincides
with the performance of LK algorithm in the case of
affine modelling. Finally, similar conclusion with that
of the previous experiment can be drawn from Fig-
ure 8 where the obtained histograms with the percent-
ages of successful convergence are depicted.

5 Conclusions

In this paper a recently proposed parametric align-
ment algorithm was used in the projective registra-
tion problem. This algorithm aims at maximizing the
Enhanced Correlation Coefficient function which is a
robust similarity measure against both geometric and
photometric distortions. The optimal parameters are
obtained by iteratively solving a sequence of approxi-
mate nonlinear optimization problems, which enjoy a
simple closed-form solution with low computational
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Figure 7: Over-Modelling case. MSD in dB as a function
of number of iterations for the noisy (8 gray levels) “Takeo”
image; (a) σp = 2, (b) σp = 6, (c) σp = 10. In (d), PoC as a
function of σp for jmax = 15.
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Figure 8: Over-Modelling case. Histograms of successful
convergence as a function of number of iterations for the
noisy (8 gray levels) “Takeo” image; (a) σp = 6, (b) σp =
10.

cost. The algorithm was compared against the well
known Lucas-Kanade algorithm, through numerous
simulation examples involving ideal and noisy con-
ditions, strong and weak geometric deformations and
even over-modelling of the warping transformation.
In all cases the proposed algorithm exhibited a better
behavior with an improvement in speed, as well as in
probability of convergence as compared to the Lucas-
Kanade algorithm.
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