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Artists can color the sky red because they know it’s blue.
Those of us who aren’t artists must color things the way
they really are or people might think we’re stupid.

—Jules Feiffer, cartoonist and satirist
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Preface

Over the past two decades, advances in hardware and software technology have allowed
for massive sales of consumer electronics based on the concept of converting analog infor-
mation into its digital form. As in many other application areas where digital devices have
replaced their analog predecessors, manufacturers and consumers have been losing inter-
est in conventional film cameras and have been turning instead to digital cameras. This is
mainly due to the fact that capturing and developing photos using chemical and mechani-
cal processes cannot provide users with the conveniences of digital cameras which record,
store and manipulate photographs electronically using image sensors and built-in comput-
ers. Features such as displaying an image immediately after it is recorded, the capacity to
store thousands of images on a small memory device and the ability to delete images from
this device in order to allow its further re-use, and the ability to edit images and even record
them with sound make digital cameras very attractive consumer electronic products.

To create an image of a scene, digital cameras use a series of lenses that focus light onto
a sensor which samples the light and records electronic information which is subsequently
converted into digital data. The sensor is an array of light-sensitive spots, called photo-
sites, which record the total intensity of the light that strikes their surfaces. Unfortunately,
common image sensors are monochrome devices which cannot record color information.
Among existing technologies developed to overcome the problem, single-sensor imaging
offers trade-offs among performance, complexity and cost. Thus, most of today’s digital
cameras are single-sensor devices which capture visual scenes in color using a monochrome
image sensor in conjunction with an array of color filters.

It should not be surprising that single-sensor digital camera imaging is considered one of
the most rapidly developing research and application fields and numerous commercial prod-
ucts capitalizing on its principles have already appeared in diverse market applications. The
extreme and still increasing popularity of consumer single-sensor digital cameras boosts
research activities in the fields of digital color image acquisition, processing, and storage.
Single-sensor camera image processing methods are becoming increasingly important due
to the development and proliferation of emerging digital camera imaging applications and
commercial devices, such as consumer digital still and video cameras, image-enabled mo-
bile phones and personal digital assistants, sensor networks, surveillance and automotive
apparatus. The surge of emerging applications, such as digital photography, visual com-
munications, machine vision, multimedia, digital cinema, art, visual surveillance, medical
imaging and astronomy, suggests that the demand for single-sensor imaging and digital
camera image processing solutions will grow considerably in the next decade.

The purpose of this book is to fill the existing gaps in the literature and comprehensively
cover the system design, implementation, and application aspects of single-sensor imaging
and digital camera image processing. Due to rapid developments in specialized areas of



single-sensor imaging and digital camera image processing, the book is a contributed vol-
ume in which well-known experts deal with specific research and application problems. It
presents both the state-of-the-art and the most recent trends in digital camera imaging and
applications. It serves the needs of different readers at different levels. It can be used as a
textbook in support of a graduate course in digital imaging and visual data processing or as
a stand-alone reference for graduate students, researchers and practitioners. For example, a
researcher can use it as an up-to-date reference since it offers a broad survey of the relevant
literature. A development engineer and technical manager may find it useful in the design
and implementation of various digital camera image and video processing tasks.

This book details recent advances in single-sensor imaging and digital camera image pro-
cessing methods and explores their applications. The book begins by focusing on single-
sensor imaging fundamentals, a reusable embedded software platform for versatile digital
cameras, and digital camera image processing chain design. The next part of the book
presents optical antialiasing filter design, spatio-spectral sampling and color filter array de-
sign, and mosaicking / demosaicking for multispectral digital cameras. Moving along the
camera image processing pipeline, this book targets frequency-domain analysis of color
filter array sampling for the design of demosaicking algorithms, linear minimum mean
square error demosaicking, and color filter array image analysis for joint demosaicking and
denoising. This is followed by automatic white balancing, enhancement of digital pho-
tographs using color transfer techniques, and exposure correction. The next part of the
book focuses on image storage issues, targeting three areas: digital camera image storage
formats, modelling of image processing pipelines from a data compression point of view,
and lossless compression of color mosaic images and videos. Then, the reader’s attention
is turned to optional, but frequently used steps in the camera image processing pipeline
such as automatic red-eye removal for digital photography and single-sensor image resiz-
ing. Finally, the remaining chapters explore video processing approaches across a broad
spectrum of single-sensor imaging applications ranging from video-demosaicking, through
simultaneous demosaicking and resolution enhancement, to image and video stabilization.

Chapters 1 through 3 discuss concepts and technologies which allow for effective design
and high performance of single-sensor imaging devices. Single-sensor digital color imag-
ing fundamentals are essential for understanding image formation using a color filter array
and a monochrome image sensor. As demonstrated by numerous examples, despite the fact
that finished digital photographs are achieved from captured sensor data through extensive
image processing, they often suffer from various visual impairments due to the shortcom-
ings of image acquisition systems, various constraints imposed on imaging devices, and a
lack of information during image processing. To improve visual quality, processing solu-
tions should be able to fully use various image characteristics. A reusable embedded soft-
ware platform for versatile single-sensor digital cameras has an important role in designing
an imaging device, as it usually supports both attractive features in user operation mode and
calibration / test functions in engineering mode. Using such a platform, embedded software
designers can easily capture the whole view of the camera hardware architecture without
being sidetracked by the study of detailed hardware specifications. The embedded software
architecture allows for fast stepping into practical camera design. In addition, the embed-
ded self-calibration flow and sensor/shutter calibration algorithms give a valuable reference
to efficiently build a commercial camera for mass production. In practice, the problem of



digital camera image processing chain design is usually seen as taking relatively simple,
well-known image processing operations and staging them in a manner that produces the
best synergistic effects. In an image processing chain that transforms digital camera raw
sensor image data into a full-color fully processed image, the possible orderings of indi-
vidual operations and associated implementation details have a great impact on both image
quality and computational efficiency. Image processing operations that are highly effective
may not be viable candidates for image processing chains in constrained computing envi-
ronments. Therefore, the image processing task is to balance the opposing requirements of
desirable image quality and modest computing resource use.

Chapters 4 through 6 are intended to cover the basics of and review recent advances in vi-
sual information sampling. Sampled imaging systems such as digital cameras often produce
aliasing artifacts. Once an image is sampled, the aliased low-frequency content is difficult
to correct automatically because it has similar characteristics as actual low-frequency con-
tent. To prevent such artifacts, most cameras use optical antialiasing filters to band-limit the
optical image spatial frequencies. Limiting the image spatial frequencies is equivalent to
blurring the image, so these filters are sometimes called blur filters. Analysis of antialias-
ing filter performance must include all capture system parameters, particularly the pixel
aperture size, lens performance, and interpolation technique. Ideally the antialiasing filter
and the interpolation technique should be co-optimized to maximize system modulation
transfer function below the Nyquist frequency and minimize system modulation transfer
function above the Nyquist frequency. In single-sensor digital cameras, visual information
is sampled by a color filter array and an image sensor. Spatio-spectral sampling and color
filter array design can be seen as a problem of simultaneously maximizing the spectral
support of luminance and chrominance channels subject to their mutual exclusivity in the
Fourier domain. Key to this design paradigm is the notion that the measurement process,
an inner product between the color filter array and the image data, induces a modulation
in the frequency domain. Modulating the chrominance spectra away from the baseband lu-
minance channel constitutes a basis for a design of a physically realizable color filter array
by specifying these modulation frequencies directly. This method generates panchromatic
color filter arrays that mitigate aliasing and admit favorable trade-offs between demosaick-
ing quality and computational efficiency. It is probably no surprise that some ideas from
single-sensor imaging can be adopted in multispectral imaging which expands color cam-
eras’ capability to capture spectral information at multiple wavelengths other than that of
visible light. Mosaicking and demosaicking in the design of multispectral digital cameras
focuses on the design of multispectral filter arrays and the development of the correspond-
ing demosaicking algorithms. The binary tree-driven multispectral filter array generation
process guarantees that the pixel distributions of different spectral bands are uniform and
highly correlated. These spatial features facilitate the design of the generic demosaicking
method based on the same tree, which considers three interrelated issues: band selection,
pixel selection, and interpolation. The development of a generic demosaicking algorithm
enables cost-effective multispectral imaging.

Chapters 7 through 9 address important issues in the area of demosaicking which is a
crucial step in the single-sensor imaging pipeline to restore the color image from the raw
mosaic sensor data. Color filter array sampling of color images involves spatial domain
multiplexing of three or more color components of a color image, each on a subset of the



lattice consisting of all sensor elements. In the frequency domain, this same operation can
be viewed as the multiplexing of a luma component at baseband and two or more chromi-
nance components centered at certain spatial modulation frequencies. This view leads to
efficient demosaicking algorithms that would not normally be evident from the spatial do-
main representation. Linear minimum mean square error demosaicking constitutes another
computationally-efficient method for reconstructing the color information of a captured
image. This method is applicable to single-sensor data obtained using different color filter
arrays. It takes advantage of a model of spatio-chromatic sampling applicable to both the
human visual system and digital cameras and allows the construction of both linear and
data-adaptive demosaicking solutions. Fourier and wavelet-packet filterbank-based color
filter array image analysis for joint demosaicking and denoising reveals that the observed
data consists of a mixture of baseband luminance signals, spectrally shifted difference im-
ages, and noise. It is quite well known that noise can significantly affect the perceptual
quality of the output from a digital camera. Since preserving the sharpness of edges and
textures is a key factor in demosaicking, noise is often amplified by demosaicking as noise
patterns may form false edge structures. The problem of estimating the noise-free image
signal given a set of incomplete observations of pixel components that are corrupted by
noise can be approached statistically from a point of view of Bayesian statistics. Such an
approach allows for different design regimes that can be thought of as simultaneous de-
mosaicking and image denoising and can allow for solutions with better performance than
when these two processing steps are handled separately.

Chapters 10 through 12 are focused on color and exposure corrections. White balancing
is used to adjust color in the captured image in order to compensate for shifts from perceived
color in the scene due to the ambient illumination. In manual mode, users can choose
from white balance settings predetermined by a camera manufacturer for typical lighting
scenarios or define a unique white balance reference. In automatic mode, digital cameras
can use special sensors to dynamically detect the color temperature of the ambient light and
compensate for its effects. Cost-effective cameras achieve color-balancing effects solely
using an image processing algorithm which sets, in a fully-automated manner, the white
balancing parameters based on the image content and statistics. Enhancement of digital
photographs using color transfer techniques constitutes an advanced approach to altering
the color of captured images. This approach transforms the captured image so that its
final colors match the palette of the target image regardless of the content of the pictures.
One way to treat this recoloring problem is to find a one-to-one color mapping that is
applied to every pixel in the captured image, producing an image which is identical in
every aspect to the original captured image, except that it now exhibits the same color
statistics, or palette, as the target image. Exposure correction in imaging devices is essential
to compensate an image for improper exposure of the sensor to light. Digital consumer
devices make use of ad-hoc strategies and heuristics to derive exposure setting parameters.
Typically such techniques are completely blind with respect to the specific content of the
scene. Unfortunately, it is not rare for images to be acquired with a nonoptimal or incorrect
exposure due to complex visual scene lighting conditions or poor optics, resulting in too
dark or bright images. Correcting the exposure thus often means reproducing the most
important regions, according to contextual or perceptive criteria, with intensities more or
less in the middle of the possible range.



Chapters 13 through 15 address the important issues of image storage and data compres-
sion. Adopting the same standard image file format enables readers, including computers
and photo printers, to make use of the image data. Current digital camera image storage
formats evolved over time, adopting some features first introduced in their predecessors.
According to the standard, captured files are named and organized into folders, and con-
tain image data along with metadata created by the camera. One of two current standards
stores the sensor image data prior to demosaicking, thus providing higher image quality
while requiring that the reader performs camera image processing. The other standard for-
mat stores the developed photograph, after the complete camera image processing has been
performed on sensor data, in an image format compatible with existing imaging hardware
and software. The position of the image compression step with respect to the demosaicking
step can be used as the basis for modelling of image processing pipelines in single-sensor
digital cameras. The current development of digital camera image processing is typically
guided by empirical performance evaluations. However, results provided by empirical eval-
uations are usually limited to the training set and are often inconclusive. Therefore, taking
advantage of mathematical models linking the performance of the camera image process-
ing to image content and algorithm settings can allow for better understanding of design
issues. Focusing on image quality and computational efficiency issues, lossless compres-
sion of single-sensor mosaic images and videos is of paramount interest in a number of
applications, ranging from digital photography and cinema to medical imaging. Techni-
cally, lossless compression of color filter array mosaic images poses a unique challenge
of spectral decorrelation of spatially interleaved samples of three or more sampling colors.
Among a number of reversible lossless transforms that can remove statistical redundancies
in both spectral and spatial domains, Mallat wavelet packet transform constitutes an ideal
solution which is extendable for lossless compression of a time sequence of color filter
array mosaic frames.

Chapters 16 and 17 deal with two popular optional steps in the camera imaging pipeline.
Automatic red-eye detection and removal is needed to eliminate red-eye effects in digital or
digitized film photographs. These effects are caused by the reflection of the blood vessels in
the retina when a strong and sudden light, such as the camera flash, strikes the eye. A com-
mon technique to reduce red-eye effects is to adopt multiple flashes to contract the pupils
before the final shot. However, the flash consumes a significant amount of power and the
effects cannot be completely removed. Therefore, red-eye removal techniques, which aim
at locating and correcting red-eyes in captured photos digitally using image processing and
pattern recognition solutions, are implemented directly in cameras, or externally in printer
drivers and software running on a personal computer. Image resizing is another optional
step in the camera imaging pipeline. The spatial resolution of digital camera images is
often modified by the user or as a result of application constraints. For instance, images are
downsampled to reduce bandwidth for their transmission, to fit more pictures on the storage
media, or to obtain the effective resolution for printing. On the other hand, images may be
upsampled to overcome the limitations in optical capabilities of inexpensive cameras with
fixed-zoom lenses or to allow close visual inspection of fine details and areas of interest.
The specific spatial resolution of the visual input may also be required in some processing
steps such as scene analysis and object recognition to achieve desired performances.



Finally, Chapters 18 through 20 discuss various issues in single-sensor video process-
ing. Recently, video-demosaicking has gained the interest of the digital camera imaging
community. With advances in hardware and software, more and more cameras allow for
the recording of digital video. Since digital video represents a three-dimensional image
signal or a time sequence of two-dimensional images, video-demosaicking goes one step
beyond traditional spatial demosaicking in order to utilize spectral, spatial, temporal, and
motion characteristics during processing to produce high-quality color video. Obviously,
a multiframe approach is also essential for simultaneous demosaicking and resolution en-
hancement. The goal of multiframe processing here is to estimate the high resolution image
from a collection of low resolution images which typically suffer from noise, and warp-
ing, blurring, downsampling, and color-sampling effects. To mitigate the shortcomings of
imaging systems, the presented multiframe approach solves both demosaicking and resolu-
tion enhancement problems in a joint fashion offering improved performance. Image and
video stabilization has become more and more important due to the enhancement of cam-
era portability which usually results in less stable image and video capturing. Unwanted
position fluctuations of the camera affect the visual quality of captured image sequences
and reduce the performance of automated machine vision systems. In order to accurately
predict both camera fluctuations and motion of objects in the scene, and to compensate
for unwanted shakes of the camera, digital cameras use various solutions such as optical,
electronic and digital image stabilization. Among these three popular approaches, digital
image stabilization is the most cost-effective as it is implemented purely in software and
requires no motion sensors or adjustable prisms.

The bibliographic links included in all chapters of the book provide a good basis for
further exploration of the presented topics. The volume includes numerous examples and
illustrations of single-sensor image processing results, as well as tables summarizing the
results of quantitative analysis studies. Complementary material is available online at
http://www.colorimageprocessing.org.

I would like to thank the contributors for their effort, valuable time and motivation to
enhance the profession by providing material for a wide audience while still offering their
individual research insights and opinions. I am very grateful for their enthusiastic sup-
port, timely response and willingness to incorporate suggestions from me and from other
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tions. I also appreciate my colleagues at Epson Edge, particularly Ian Clarke, Sohaib Sajid
and Graham Sellers for their understanding and support. Finally, a word of appreciation for
CRC Press / Taylor & Francis for giving me the opportunity to edit a book on single-sensor
imaging. In particular, I would like to thank Dr. Phillip A. Laplante for his encouragement,
Nora Konopka for initiating and supporting this project, and Shashi Kumar for his LaTeX
assistance.
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1.1 Introduction

Capturing visual scenes in color and producing digital photographs which are faithful
representations of the original scene is quite challenging due to a number of constraints
under which digital cameras operate. Differences in characteristics between image acqui-
sition systems and the human visual system constitute an underlying problem in digital
color imaging. In today’s digital cameras, most challenges result from sampling visual
information spectrally, spatially, tonally and temporally.

Using a color filter array, spectral sampling reduces available color information to light
of certain wavelengths which can be acquired by a monochrome image sensor. Spatial
sampling reduces the angle of view that the camera sees to a rectangular array of pixels in
the captured image. This is realized by an image sensor representing a two-dimensional
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array of light-sensitive spots which record the total intensity of the light that strikes their
surfaces. Tonal sampling characterizes the quantization process used to represent the orig-
inal continuously-varying visual information by discrete values. Finally, time sampling
characterizes an exposure of the sensor to the light for a certain amount of time.

Obviously, the first step in achieving high-quality images is to design sampling proce-
dures in a manner which allows for a precise digital representation of various visual scenes.
However, as with other real-life imaging systems, this is not quite possible and extensive
processing of acquired sampled data is needed to compensate for the shortcomings of an
imaging system and to produce digital photographs with a natural appearance matching the
original scene.

To facilitate the following discussions on technical challenges in digital cameras, this
chapter presents fundamentals of single-sensor color imaging and digital camera image
processing. More specifically, Section 1.2 describes popular color image acquisition tech-
nologies. Of particular interest are consumer digital cameras which use color filter arrays
to capture visual scenes in color using only one monochrome image sensor. Since color
filter arrays distinguish this type of digital camera from other image acquisition solutions,
this section also discusses color filter array design issues and digital image representations.

Section 1.3 presents image processing pipelines for single-sensor color imaging devices.
The data acquired by such devices constitutes a grayscale image with a mosaic structure
following the underlying pattern of the color filter array. A pipeline consists of a number
of processing steps necessary to produce a finished photograph from the acquired sensor
data. Depending on the image storage format and user requirements, such pipelines can be
implemented in camera or software running on personal computers. Presented examples
of real digital camera images suggest that both the choice and order of processing steps
employed in the pipeline greatly influence the quality of produced digital photographs.

Section 1.4 focuses on typical image quality issues in single-sensor digital cameras.
These issues mainly relate to the presence of noise introduced into the image during its
acquisition and various color shifts and artifacts caused by insufficient image processing.

Section 1.5 discusses important characteristics of color images and videos. Exploring dif-
ferent types of pixel correlations, these characteristics relate to spatial, spectral, structural
and temporal properties of the captured visual data and the omission of these characteristics
during processing usually results in various visual artifacts in finished images. Thus, using
as much of the information available in the image as possible is crucial for achieving high
visual quality of captured images.

Finally, this chapter concludes with Section 1.6 by summarizing main single-sensor color
imaging and digital camera image processing ideas.

1.2 Color Image Acquisition in Digital Cameras

Digital cameras acquire a scene by first focusing and then transmitting light through
the optical system. Once the light reaches the sensor surface, it is sampled by the sen-
sor in order to obtain the corresponding digital representation of the sensor values through
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FIGURE 1.1 (See color insert.)

Three-sensor digital camera architecture.

subsequent analog-to-digital conversion. Acquired digital data undergoes a series of im-
age processing operations [1], [2] which are realized by an application-specific integrated
circuit and a microprocessor. To reduce various artifacts due to the sampling of visual
information, camera manufacturers often place blur filters in the optical system to reduce
high-frequency content of the image. Chapter 4 discusses optical issues in detail.

Human vision is based on three types of color photo-receptor cone cells, implying that
three numerical components are necessary and sufficient to describe a color [3]. However,
common image sensors, such as charge-coupled devices (CCD) [4], [5], charge-injection
devices (CID) [6], [7], or complementary metal oxide semiconductor (CMOS) sensors [8],
[9], are monochromatic devices. Therefore, to capture color information using such sen-
sors, digital camera manufacturers place a color filter on top of each sensor cell.! The two
most popular camera technologies for color image acquisition — three-sensor and one-
sensor solutions — are described below.

1.2.1 Three-Sensor Digital Cameras

To overcome the sensor’s monochromatic nature and capture the visual scene in color,
predecessors of today’s consumer digital cameras used a beam splitter to separate incoming
light onto three optical paths, each having its own red (R), green (G) or blue (B) color
filter with different spectral transmittances [12] and sensor for sampling the filtered light

TThere also exists a layered sensor which directly captures the complete color information at each spatial
location in an image during a single exposure. This is possible by stacking and ordering color filters vertically
according to the energy of the photons absorbed by silicon [10], [11]. The layered sensor is an alternative to
earlier technology which rotates a series of red, blue and green filters in front of a single sensor in order to
record three separate images in rapid succession.
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FIGURE 1.2 (See color insert.)

Three-sensor imaging. (a) Registration of three grayscale images on the left, top and bottom of the figure
which were acquired using sensors with red, green and blue color filters, respectively. (b) Final full-color

image achieved by registering three sensor images.

(Figure 1.1). Each optical path deals with the same visual information; however, because
of the filters, each sensor only responds to one of the primary colors. Thus, each of three
sensors acquires a monochromatic image corresponding to one channel of a color image
output by a camera. The resulting color image is produced by registering three grayscale
(monochromatic) images, requiring precise mechanical and optical alignment. Figure 1.2
shows the registration procedure.

The captured photo can be considered a K; x K, RGB digital color image x :
7> — 73 representing a two-dimensional matrix of three-component pixels X(rs) =
[X(r5)1 ,x(m)z,x(mﬁ]? As noted, each individual channel of x is a K; x K, monochromatic
image x; : Z> — Z, for k = 1,2,3. The pixel X(,,5) represents the color vector [13] indexed
by its spatial location (r,s), with r = 1,2,..., K| denoting the image row and s = 1,2,...,K»
denoting the image column. The value of the R (k= 1), G (k = 2), and B (k = 3) component
X(r,s)k defined in the integer domain Z is equal to an arbitrary integer value ranged from 0
to 255 in a standard 8-bits per component representation and denotes the contribution of
the k-th primary in x(,.). The process of displaying an image creates a graphical represen-
tation of the image matrix where the pixel values represent particular colors in the visible
spectrum.

1.2.2 Single-Sensor Digital Cameras

It is probably no surprise that the sensor is the most expensive component of the digital
camera, usually taking from 10% to 25% of the total cost [14]. To reduce expenses and
allow for high sales volumes, current consumer digital cameras use only one image sensor
covered with a mosaic of color filters to capture all the necessary colors at the same time.
Figure 1.3 shows the sensor with a color filter array (CFA) proposed by B.E. Bayer in
1976 [15] which has been the most widely used CFA since its introduction. Examples of
various CFAs used by camera manufacturers can be found in References [16] and [17], and
Chapters 5 and 8. Reference [17] also presents detailed discussions on CFA design issues
together with performance evaluations of a number of CFAs.
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FIGURE 1.3 (See color insert.)

using color filters.

One of the most important features for the design of CFAs is the choice of a color sys-
tem [17]. Popular CFA configurations are usually constructed using tristimulus (RGB)
color filters. There also exist configurations based on mixed primary and complementary
colors (e.g., mixtures of magenta, green, cyan, and yellow). Recently, CFAs with four and
more colors were introduced; these typically contain white or colors with shifted spec-
tral sensitivity which may be combined with primary or secondary colors. Four or more
color systems may produce a more accurate hue gamut compared to tristimulus systems;
unfortunately, they often limit the useful range of darker colors [16].

Regardless of which color system has been employed, the acquired CFA sensor readings
constitute a K; x K> monochromatic image z : Z> — Z with pixel values Z(rs)- Figure 1.4a
shows a simulated example. The image has a mosaic-like structure dictated by the CFA and
is either passed through the camera image processing pipeline to develop a final digital pho-
tograph or stored as the so-called raw camera file. In either case, the arrangement of color
filters in the actual CFA is known, and thus the pixels in the CFA image can be mapped
to the corresponding channels of a color image of the same size [2]. For example, a CFA
image z acquired using the Bayer CFA with GR phase in odd rows and BG phase in even
rows corresponds to a color image x with RGB pixels x(,..) = [z(m),O,O]T for (odd r, even
$) X(r.5) = [0,2(1,5),0]" for (odd r, odd s5) and (even r, even s), and X(,.;) = [0,0,z,,;)]" for
(even r, odd s). Two zeros in X(,.; indicate two missing components in order to denote their
portion to the coloration of the image x shown in Figure 1.4b which is a color version of the
CFA image shown in Figure 1.4a. These two missing components per pixel location must
be determined from the adjacent pixels using a digital image processing solution called
demosaicking [2], [18], which restores the full-color information.? Thus, demosaicking is
an integral step in the single-sensor imaging pipeline. Depending on the employed algo-
rithm, the demosaicked image, such as the one shown in Figure 1.4c, may suffer from color

2QOther terms known from the literature are demosaicing, color interpolation, and CFA interpolation.
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FIGURE 1.4 (See color insert.)

Single-sensor imaging: (a) grayscale mosaic image, (b) color version of the mosaic image, (c) demosaicked

full-color image, and (d) postprocessed demosaicked image with improved visual quality.

shifts, aliasing effects, blur, and other visual artifacts. These effects can be suppressed, if
not eliminated, via demosaicked image postprocessing [19], [20], [21]. Figure 1.4d shows
an example of a postprocessed demosaicked image. Apart from demosaicking and demo-
saicked image postprocessing which constitute, respectively, mandatory and optional steps
in the single-sensor imaging pipeline, the rest of the pipeline is more or less identical to
the pipeline in a three-sensor digital camera. Chapter 3 discusses the digital camera image
processing chain design in detail.

Another important factor in CFA design is the arrangement of color filters in the array,
because it suggests potential cost-effectiveness of color reconstruction by demosaicking,
immunity to color artifacts and color moiré, reaction of the array to image sensor imper-
fections, and immunity to optical and electrical cross talk between neighboring pixels. A
small basic repetitive unit in the CFA usually allows for relatively simple demosaicking.
For example, the Bayer CFA shown in Figure 1.3 is constructed by repeating a 2 X 2 square
composed of one red filter, one blue filter, and two green filters located on the diagonal.
Given that the wavelength of the green color band is close to the peak of the human lumi-
nance frequency response,’ many CFAs have the higher number of green filters compared

3In the literature, G components are often referred to as the luminance whereas R and B components are known
as the chrominance.
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to the amount of other filters in the array in order to reduce the amount of demosaicking
artifacts [22]. The sensitivity of the array to color artifacts in the demosaicked image can
be reduced by surrounding each color filter with color filters of all other types, thus min-
imizing the size of the local neighborhood and performing demosaicking in a more local
fashion. Introducing some degree of randomness or aperiodicity into the arrangement of
color filters can make CFAs more robust to color moiré effects; unfortunately, this comes
at the expense of increased computational complexity due to the larger size of the mini-
mum repetitive pattern. Image sensor imperfections are typically observed along rows or
columns of the sensor cells, suggesting that a diagonal version of the Bayer CFA as well as
various diagonal stripe patterns can be more immune. Finally, CFAs with the fixed number
of neighbors corresponding to each type of color filters in the CFA are usually more robust
against optical and electrical cross talk between neighboring pixels than pseudo-random
patterns. This concludes an overview of current CFA design issues. A novel view on the
problem of designing CFAs is presented in Chapter 5.

1.3 From Raw Sensor Data to Digital Photographs

As previously discussed, once the sensor image has been acquired, it can be stored as
raw data or passed through the camera image processing pipeline to produce a digital pho-
tograph. A number of digital cameras, typically digital single lens reflex (SLR) cameras,
use the former approach by following the Tagged Image File Format for Electronic Pho-
tography (TIFF-EP) [23]. By applying lossless compression to raw sensor image data and
storing compressed image data together with metadata containing information about the
camera settings, TIFF-EP allows for developing high-quality digital photographs on a com-
panion personal computer (PC) using sophisticated solutions, under different settings, and
reprocessing the image until certain quality criteria are met. Thus, this approach may have
quite different design and performance characteristics compared to the latter one where
the sensor image, immediately after its acquisition, undergoes in-camera real-time image
processing to produce the final image to be typically stored using Joint Photographic Ex-
perts Group (JPEG) compression [24] in the Exchangeable Image File (EXIF) format [25]
together with the metadata. Chapter 13 discusses camera formats in detail.

1.3.1 Pipelining Image Processing Solutions

The way an imaging pipeline is constructed can vary significantly between camera and
imaging software manufacturers, depending on many factors such as the selection and or-
der of pipelined image processing steps, preferences on visual appearances of digital pho-
tographs, implementation constraints, etc. Typically, early processing stages [26] aim at
detecting defective pixels caused by a failure of individual sensor photo-elements and cor-
recting them using the concept of image interpolation. A linearization step may be needed
if the captured data resides in a nonlinear space due to the involved electronics. In low-
exposure images, where both signal and noise levels may be comparable, it is essential to
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FIGURE 1.5 (See color insert.)

Images stored at different stages of the single-sensor camera image processing pipeline: (a) mosaic CFA image,
(b) demosaicked image, (c) white-balanced image, (d) color-corrected image, and (e) tone / scale-rendered

image.

compensate for dark current noise which is introduced into the signal through thermally
generated electrons in the sensor substrate. The rest of the pipeline consists of image pro-
cessing steps which critically influence the visual quality of final digital photographs.
Figure 1.5 shows the images produced by typical components of the imaging pipeline.
Namely, the CFA mosaic image is shown in Figure 1.5a. Figure 1.5b shows the full-color
image restored by demosaicking CFA mosaic data — the step which distinguishes the
single-sensor camera image processing pipeline from other camera pipelines. Figure 1.5¢
shows the image after white balancing which is the process of adjusting the image values
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to compensate for the scene illuminant, recovering the true scene coloration [27]. Since
the spectral sensitivities of the camera are not identical to the human color matching func-
tion [26], the pipeline uses color correction to adjust the values of color pixels from those
corresponding to accurate scene reproduction to those corresponding to visually pleasing
scene reproduction. Figure 1.5d shows a color-corrected image. Finally, Figure 1.5¢ shows
the image achieved after subsequent tone / scale rendering which transforms the color im-
age from unrendered spaces with twelve to sixteen-bit representations to a rendered (mostly
sRGB [28]) space with eight-bit representation, as is required by most output media. This
step also makes the tonality of a finished image match the nonlinear characteristics of the
human visual system. Additional information on white balancing can be found in Chap-
ter 10, and on color correction and tone / scale rendering in Chapter 3.

The purpose of Figure 1.5 is to illustrate the basic camera image processing chain. The
processing steps included in the chain are essential for producing visually pleasing images
and can be found in practically all digital cameras. Depending on available resources and
camera manufacturer preferences, the processing chain can be extended by adding a series
of image quality enhancement steps. As shown in Figure 1.4, visual quality of the demo-
saicked image can be improved through its postprocessing. In order to enhance structural
content, such as edges and color transitions, a sharpening step [29] should be included
whereas noise and insignificant details can be suppressed or removed via denoising or low-
pass filtering [30], [31]. As visually pleasing appearances of photographs also depend on
proper exposure settings, there is also a need for the inclusion of exposure correction in the
pipeline. Chapter 12 describes popular exposure correction solutions for digital cameras.

It should be mentioned here that both professional photographers and advanced digital
SLR camera users prefer no sharpening and denoising in order to preserve the natural ap-
pearance of photographs. In addition, professional photographers tend to control white
balancing and exposure correction manually in order to achieve desired visual effects. On
the other hand, slim compact digital cameras, image-enabled mobile phones and personal
digital assistants (PDAs) have to rely on denoising due to the poorer noise characteristics
of miniature sensors compared to large-size sensors in SLR cameras. Functionalities of the
camera image processing pipeline are often further enhanced by adding optional steps such
as image resizing [32], [33] to alter the spatial resolution of captured images.

1.3.2 Design Alternatives

As already noted, the order of processing steps has great impact on the overall perfor-
mance of the imaging pipeline. Unfortunately, there is no ideal way of pipelining the
processing steps because the choice of a solution for each particular image processing step
has a great impact on both design and performance characteristics of the imaging pipeline.
To simplify the problem of designing the single-sensor camera imaging pipeline, the posi-
tion of processing steps under consideration can be related to the position of demosaicking.
Practically any processing step can be used before or after demosaicking. Performing steps
before demosaicking can allow for significant computational savings due to the grayscale
nature of CFA image data, as opposed to performing the same operation on demosaicked
color data which basically increases the number of calculations three-fold.
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FIGURE 1.6 (See color insert.)

Image sharpening. Finished images generated by the pipeline depicted in Figure 1.5: (a) original pipeline, i.e.,
no sharpening, (b) original pipeline with added image sharpening after demosaicking, and (c) original pipeline

with added image sharpening before demosaicking.

Figure 1.6 shows the influence of image sharpening on the visual quality of digital cam-
era images. Figure 1.6a is a cropped area from the image in Figure 1.5e. Inspection of
the results shown in Figure 1.6a and Figure 1.6b reveals that enhancing the pipeline by
adding an image sharpening step after demosaicking increases sharpness of the camera
image while amplifying color noise and artifacts present in the image after demosaicking.
On the other hand, as can be seen in Figure 1.6c, performing the same image sharpening
operations before demosaicking can produce even more significant sharpening effects than
the previous approach. In this case, however, the sharpening step may amplify sensor noise
present in the captured CFA image data.

When exploring TIFF-EP and EXIF storage formats, a typical example of the process-
ing task considered to be placed before or after demosaicking in the single-sensor imaging
pipeline is image compression. Refer to Chapters 3, 14, and 15 for details on compression
schemes. Also, image resizing, denoising, sharpening, white balancing, and tone-scale
rendering are implementable in either case. Some processing operations can also be imple-
mented in a joint manner with demosaicking, thus potentially reducing cost of implemen-
tation, enhancing performance of processing tasks, and producing higher visual quality.
Usually, implementing various processing steps in a joint process is possible if they em-
ploy similar digital signal processing concepts. A good example of that is demosaicking
and image resizing which both basically perform interpolation [32], [34], [35]. Another
example of the joint process can be constructed by treating demosaicking and denoising
from the signal estimation perspective [30]. Details on these two joint processes and per-
formance comparisons between joint implementations and the corresponding traditional
cascades can be found in Chapters 9 and 17. Table 1.1 lists other demosaicking-based
processing configurations implementable in today’s imaging pipelines.

It should be noted at this point that some integration can also be done apart from demo-
saicking. Examples include simultaneous white balancing and color correction, and tasks
based on the filtering concept, such as simultaneous image smoothing and sharpening [31],
[36] or simultaneous image resizing and edge enhancement [37], both achieved by combin-
ing filters with low-pass and high-pass characteristics. Integrating and performing different
processing steps in the camera imaging pipeline jointly is interesting, in particular from the
design point of view. However, depending on the nature of the processing steps to be inte-
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TABLE 1.1
Feasibility of some interesting processing configurations for today’s imaging pipelines.
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image encryption

forensics
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grated this may be impractical due to the increased memory requirements and complexity
of the design, as well as reduced flexibility and high number of calculations to be repeated
if some of the steps have to be rerun with different settings.

Some designs can flexibly accommodate various image, video and multimedia process-
ing operations which are occasionally used or may be required in the near future as default
components of the imaging pipeline. An example of the former is red-eye removal [38],
[39] which aims at detecting and correcting defects in photographs caused by the reflection
of the blood vessels in the retina due to strong and sudden light, and video stabilization
needed to compensate for undesired camera movements [40], [41]. For details refer to
Chapters 16 and 20, respectively. The latter includes emerging CFA video compression
used to store captured video data by reducing spectral and spatiotemporal redundancies
present in single-sensor captured image sequences [42], video-demosaicking which restores
full-color video from its CFA sampled version [43], [44], [45], and resolution enhancement
which aims at producing images or frames of higher resolution compared to the input [44],
[46]. Detailed discussions on these topics can be found in Chapters 15, 18, and 19, respec-
tively. In terms of multimedia, many digital cameras support audio, either sole or in con-
junction with video. Image-enabled consumer electronic devices that greatly benefit from
audio and video support are mobile video phones and PDAs. It is quite common to employ
in-camera face detection [47], [48] in order to improve auto-focusing and to optimize ex-
posure and flash output. Face detection can also help to improve performance of automatic
red-eye removal and to produce visually pleasing photographs with enhanced color and
tonal quality by setting the optimal white balance and color correction. In addition to face
detection, face recognition [49], [50] is used in digital photo-archives to organize and re-
trieve photos. Finally, as in other areas dealing with digital media, there are already certain
needs in digital camera imaging for digital rights management (DRM) [51], [52], [53], en-
cryption [54], [55], and forensics [56], [57] in order to ensure digital photograph integrity,
secure transmission of photos in public communication networks and protect intellectual
property rights.
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1.4 Visual Artifacts in Digital Camera Images

Digital images are often corrupted by noise and various artifacts which significantly
degrade the value of captured visual information, decrease the perceptual fidelity of an
image and complicate many image processing and analysis tasks. In practice, relations
between sources of these defects are very complex. Reducing or eliminating one type of
defect can have significant implications on the appearance of another type of defect.

The following focuses on common types of visual impairments present in single-sensor
captured images. Namely, issues to be discussed include image noise, demosaicking ar-
tifacts, coloration and exposure shifts, and compression artifacts. Discussions of other,
mostly optics-based types of defects, such as spherical and chromatic aberrations, vi-
gnetting and flare effects, can be found elsewhere (e.g., Reference [58]).

1.4.1 Image Noise

Noise in digital camera images usually appears as random speckles in otherwise smooth
regions, altering both tone and color of the original pixels. Typically, noise is caused by
random sources associated with quantum signal detection, signal independent fluctuations,
and inhomogeneity of the responsiveness of the sensor elements. The appearance of noise
in images varies amongst different digital camera models. Noise increases with the sen-
sitivity (ISO) setting in the camera, length of the exposure, and temperature. It can vary
within an individual image; darker regions usually suffer more from noise than brighter
regions. The level of noise also depends on characteristics of the camera electronics and
the physical size of photosites in the sensor. Larger photosites usually have better light-
gathering abilities, thus producing a stronger signal and higher signal-to-noise ratio. A
survey of these issues, supported by numerous examples, can be found in Reference [59].

According to the tristimulus theory of color representation, the RGB color vector x(,.) =

[x(m)l,x(,ys)z,x(mﬂ]T is uniquely defined by its length (magnitude) My, = [X(. =
(x%m) 1 —i—x%m)z +x%m)3)*1/ 2 and orientation (direction) Dy, = X(n5)/ |1X(rs) | = X(r5) /M.,
in a three-dimensional vector space, where |[Dx, || = 1 denotes the unit sphere. Thus,

rs)

both direction and magnitude of X, significantly influence perception of its color by the
human observer and both are affected by noise [13]. Since noisy pixels deviate from their
noise-free neighbors, the evaluation of magnitude and directional differences between vec-
tors in a local image area constitutes the basis in a number of noise filtering techniques.
Reference [31] surveys popular filtering approaches in detail.

It is well known that magnitude and direction of a color vector correspond to its lu-
minance (intensity) and chrominance (color) characteristics. Thus, noise can be seen as
fluctuations in intensity and color, and can be handled separately in the luminance and
chrominance domain. The relative amount of color and luminance noise differs signifi-
cantly amongst digital camera models. As shown in Figure 1.7, color noise can be com-
pletely eliminated; however, suppressing luminance noise can result in unnatural looking
images and excessive blur. For additional discussions on noise suppression in digital cam-
era images refer to Chapters 3 and 9.
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FIGURE 1.7 (See color insert.)

Cropped parts of a color checker image captured with ISO 1600 setting: (a) captured noisy image, (b) lumi-

nance noise suppression, (c) color noise suppression, and (d) both luminance and color noise suppression.

1.4.2 Demosaicking Artifacts

Demosaicking is the core of image processing in single-sensor digital color cameras.
Since its goal is to restore both color and structural content of an image from mosaic sensor
data, the quality of demosaicking significantly influences the amount of detail and artifacts
in finished digital photographs.

Figure 1.8 shows several examples of typical issues in demosaicking. Namely, Fig-
ure 1.8a shows an image which suffers from zipper effects. These effects can usually be
seen along abrupt edges when pixels from both side of an edge are used in demosaick-
ing. Figure 1.8b shows an image with isolated color artifacts which are often introduced in
regions rich of details due to the lack of spectral and structural information during demo-
saicking. Due to their localized nature, both defects described above are not as apparent
as other impairments when printing or displaying an image at its natural resolution. As
can be seen in Figure 1.8c, this is not the case of aliasing artifacts or color moiré patterns
which usually constitute large, visually annoying regions. These artifacts cannot be there-
fore removed using traditional low-pass filters which rely on local image characteristics.
Aliasing artifacts appear in areas where the resolution limit of the sensor has been reached
and where color sampling prevents correctly detecting orientations of edges in an image.
This is particularly true in fine texture regions where aliasing artifacts often take the form
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FIGURE 1.8 (See color insert.)

Typical demosaicking defects: (a) zipper effects, (b) color shifts, (c) aliasing artifacts, and (d) blur effects.

of repeating patterns of false colors. Finally, Figure 1.8d shows an image with apparent
resolution loss due to excessive blur of its structural content during demosaicking with
insufficient edge-preserving characteristics.

As discussed above, demosaicking artifacts vary in their characteristics, appearance and
size. Considering the complexity of the problem of reversing color sampling in areas with
difficult structural content, demosaicking artifacts may never be fully avoided in real-life
situations. Therefore, many digital camera designers focus on achieving trade-offs between
noise, image sharpness, demosaicking artifacts and processing time rather than emphasiz-
ing any of these issues.

1.4.3 Coloration Shifts

Image sensors are calibrated for certain light characteristics. Whenever an image is shot
under light of a different color temperature from those for which sensors were calibrated,
the image coloration is shifted from the perceived coloration of a scene. This is well ob-
servable in the case of neutral (i.e., achromatic) colors, particularly white, which is one of
the most recognizable colors due to high and approximately equal contributions of all three
color primaries. Unlike noise and demosaicking artifacts which have a localized nature, set-
ting an incorrect white balance affects the appearance of the whole image. Therefore, white
balance is considered by many as the most important characteristic of captured images.
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FIGURE 1.9 (See color insert.)

Coloration shifts due to incorrect white balance settings: (a) cool appearance, (b) warm appearance, (c) grayish
appearance, (d) saturation effects. See also Figure 1.5e corresponding to an as-shot white balance setting.

To produce photographs with a natural color tint, an image processing operation called
white balancing is performed on captured images. Digital SLR camera users usually set
the white balance parameters in their camera based on the shooting situation. Alterna-
tively, some adjustments to color balance can also be made by using software for process-
ing camera images stored in a raw format. Detailed discussions on popular white-balancing
approaches can be found in Chapter 10.

Figure 1.9 shows examples of incorrect white balancing. As demonstrated, images often
appear bluish (Figure 1.9a) or reddish (Figure 1.9b) which are often referred to as cool
or warm, respectively. Some algorithms produce images with a grayish appearance (Fig-
ure 1.9¢) or with saturated colors (Figure 1.9d). Obviously, such images are not as visually
pleasing as images obtained using an as-shot white balance setting (Figure 1.5¢e).

1.4.4 Exposure Shifts

An exposure setting is another important characteristic which affects the global appear-
ance of captured images. Through opening and closing the aperture, the camera basically
controls the amount of light reaching the sensor. By deciding how long to leave the shutter
open, it controls the period for which the sensor is exposed to the light to collect pho-
tons. Finally, adjusting the ISO also has an effect on the exposure. Depending on exposure
settings, the appearance of images can range from dark, which is the effect known as un-
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FIGURE 1.10 (See color insert.)

Influence of exposure settings on image quality: (a) underexposure, (b) normal exposure, and (c) overexposure.

derexposure, to bright, which is referred to as overexposure. Figure 1.10 shows images of
the same scene captured with different exposure settings.

To ensure proper exposure, digital cameras use various compensation methods which
first measure the amount of light reaching the image sensor and then adjust the exposure
accordingly. These methods, however, often fail in complex scenarios with different sub-
jects having different reflectivity. Therefore, cameras and PC software also allow manual
control of the exposure by simply multiplying and dividing sensor readings by factors of
two. Refer to Chapter 12 for additional information on exposure compensation methods.

1.4.5 Image Compression Artifacts

Finished digital camera images are commonly stored in EXIF format using JPEG com-
pression to reduce their file size and allow more pictures to fit on a memory card. Depend-
ing on compression settings, JPEG can reduce the size of original files ten-fold, and for
images with solid color backgrounds even more. Due to lossy coding, JPEG-compressed
images typically have a blocky appearance which is often referred to as image compression
artifacts. These artifacts (and basically also compression abilities of JPEG) result from
casting away neighboring pixels with similar luminance and chrominance components in a
manner which prevents recovering their original values. Since JPEG and other lossy com-
pression formats ruin fine details and edges, compression artifacts are considered by many
a bigger problem than sensor noise.

Fortunately, many of today’s digital cameras allow for storing captured images in a raw
format following the TIFF-EP standard. Some raw formats do not use compression at all
whereas others apply lossy compression to CFA image data, very often using quantization
and filtering which results in loss of the resolution. However, most raw formats rely on
lossless compression to reduce the size of the files without affecting image quality.

Figure 1.11 demonstrates the effect of compression on the image quality. As shown in
Figure 1.11a, compressing full-color data using JPEG produces block artifacts and reduces
original structural content. It also suppresses potential demosaicking artifacts due to the
low-pass nature of lossy compression. Applying the same compression scheme to CFA
mosaic data using a structure conversion [60], [61] results in less blocky appearance of
the final image shown in Figure 1.11b while it may be accompanied with higher level of
noise and demosaicking artifacts due to performing demosaicking after lossy compression.
Finally, Figure 1.11c shows that compression artifacts can be avoided by using lossless
coding. Chapters 14 and 15 discuss image compression issues in detail.
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FIGURE 1.11 (See color insert.)

Influence of data compression on image quality for the same demosaicking method: (a) lossy compression of

a full-color image, (b) lossy compression of a CFA image, and (c) lossless compression.

1.5 What Is Really Important in Digital Camera Image Processing?

In order to prevent the introduction of various artifacts to finished digital camera im-
ages, well-designed processing solutions should be able to follow image characteristics as
much as possible. Focusing on still digital photography, this relates to the utilization of
spatial, structural, and spectral characteristics. In digital video capture, additional temporal
characteristics should be considered.

Obviously, the need for spatial characteristics results from the fact that spatially neigh-
boring pixels are usually highly correlated. Structural characteristics should be followed
because edges and fine details convey essential information about a scene. Using spec-
tral characteristics is essential since a typical natural image exhibits significant correlation
among its R, G, and B color planes. Finally, temporal characteristics are good indicators of
scene changes and object motion in digital video.

To support the above discussion, Figure 1.12 illustrates the importance of using structural
and spectral characteristics during demosaicking. As can be seen from this example, the
omission of any of these characteristics usually results in excessive blur, color shifts, and
aliasing effects.

1.5.1 Spatial Characteristics

Natural images are nonstationary due to noise and blur processes encountering the image
formation. The presence of edges and fine details results in additional variations between
neighboring regions. To reduce the processing errors, many camera image processing so-
lutions (e.g., demosaicking, image resizing, noise filtering, edge sharpening, etc.) operate
in small localized image areas, each of which can be treated as stationary. Such small areas
are localized by placing the supporting window [13], usually centered in the pixel location
(r,s) under consideration. The window, defined as the set { of pixel locations (i, j) in a
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FIGURE 1.12 (See color insert.)

Different visual quality of images demosaicked using: (a) spatial characteristics, (b) spatial and spectral char-
acteristics, (c) spatial and structural characteristics, and (d) spatial, structural, and spectral characteristics.

local neighborhood of (r,s), slides over the entire image placing, successively, every tar-
get pixel at the center of a local neighborhood denoted by {. The procedure generates the
output of the processing operation as a function f(-) — defined as f(z(; j; (i, ) € €) for
CFA image or f(X; j); (i, j) € ) for full-color data of samples identified by {. In this way,
processing solutions can minimize local distortion in the output image.

The performance of a processing solution based on the windowing concept is generally
influenced by the size of the local area and the actual number of samples in it used as input
of the processing solution. Note that these two often refer to two different things. Namely,
the former can be seen as an indicator of memory requirements, as it suggests how many
image lines (or columns) should be buffered. The latter indicates the processing speed, as it
denotes how many normalized operations (e.g., additions, multiplications, etc.), as dictated
by function f(-), have to be performed on pixels localized by {. For example, it is common
in demosaicking to use § = {(r—2,s5),(r—1,s),(r,s —=2),(r,s — 1),(r,s), (s + 1), (r,s +
1),(r+1,s),(r+2,s). Implementing such demosaicking may require buffering five image
lines and in these lines operate in five columns to read all necessary values. In the literature,
such demosaicking is often referred as 5 x 5 demosaicking, although in fact only nine of
twenty-five available samples are used in f(-).
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FIGURE 1.13 (See color insert.)

Correlation characteristics of the image shown in Figure 1.5e. Brighter values correspond to higher correlations
inside the supporting window. (a) RGB values denote spatial correlations in the red, green and blue channel
of the original image, respectively. (b) RGB values denote spectral correlations between red and green, green

and blue, and red and blue channels of the original image, respectively.

Pixels inside the supporting window usually exhibit significant spatial correlation, mean-
ing that their values are very similar. As shown in Figure 1.13a, this is truly the case of flat
and slowly changing regions. On the other hand, in areas rich of edges and fine details, spa-
tial correlations are usually weaker. Thus, spatial characteristics play in an important role
in many image processing operations, such as image compression, demosaicking, filtering
and resizing.

1.5.2 Structural Characteristics

Edges and flat regions constitute the basic structural content of a digital image. Edges
can be seen as discontinuities in the vector space representing the color image. Edges split
image regions of different color or intensity; thus, they are essential for human perception.
It is therefore important to preserve edges and fine details during image processing.

Popular edge operators process information contained in a local image neighborhood,
which is determined by supporting window {. Fast and robust edge detection can be
achieved with using image-agnostic edge operators able to perform with no prior infor-
mation about the image structure. Edge detectors for color images can be divided into two
basic classes: scalar operators which process each channel of a color image separately or
require color-to-luminance conversions before edge detection, and vector operators which
fully utilize the spectral correlation and process pixels in a color image as vectors. Both
approaches are surveyed in References [31] and [62].

The trade-off between computational complexity and good detection performance makes
scalar edge operators ideal candidates to support various camera image processing steps.
Typical steps which rely on some form of edge detection are demosaicking, image resizing,
denoising, and image sharpening. Edge detection may also help in image compression and
white balancing if in these steps more localized processing is needed. Scalar edge detectors
use the concept of gradients — the first-order directional derivatives of the image — to
determine the edge contrast used in edge map formation, or the concept of zero-crossing
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— the second-order directional derivatives — to identify locations with zero crossings.
Through gradients of the image function Uj,.:

(1.1)

U, AU
_ (rs) (rs)
VU(’?S) - |: dr ’ ds :|

the first derivative uses the gradient magnitude

Vo] = (22) + (%2)° 12

to provide information on the rate of change of image intensity and the gradient direction

6(5) = arctan ( (”)/aUrr > (1.3)

to determine the orientation of an edge. Since the second derivative is zero when the first
derivative achieves a maximum, it is also possible to localize edges by evaluating the zeros
of the second derivatives of Uj,.;). One possible implementation of second-order derivatives
is given by

AU(r,5) = VAU (r,s) = ZUs) 4 2UGs), (1.4)

With respect to single-sensor imaging, edge-detection can be performed on mosaic CFA
data or full-color data. In either case, popular edge operators can be implemented as fol-
lows:

M) = WUy = ), Wiy} (15)
(i.)€g
where m, ) is the detector response, u. ) is image data, and w. .y denotes the coefficient of
the convolution mask w used to approximate the first- or second-order directional derivative
edge operator. Each coefficient w(; ;) is associated with spatial location (i, j). The term
U(rs) = {ugij) (i,j) € C} denotes the set of (CFA or full-color) pixels used as input by
performing detection in the pixel location (r,s) under consideration.

Typically, for the first-order directional derivative operators, masks are defined enabling
the determination of the gradient magnitude in each of two orthogonal directions. For
example, the convolution masks for the well-known Sobel operator are defined as follows:

10 1] [-1-2—1 01 2] [-2-1 0
w=<{|-202[,] 00 0], orw=<|-1 0 1[,]-1 0 1 (1.6)
10 1 1 2 1 2.1 0 01 2

The first pair of convolution masks allows for edge detection in horizontal and vertical
directions, whereas diagonal edges can be located using the second pair.

A similar approach is to perform edge detection using second-order directional derivative
operators. Equation 1.4 represents the well-known Laplacian operator which is approxi-
mated in practice for a four- and eight-neighborhood, respectively, as follows:

0 10 1 11
w=|1—-4 1|,orw=|1-8 1 (1.7)
0 10 1 1 1
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FIGURE 1.14 (See color insert.)

Structural content of the image shown in Figure 1.5e: (a) horizontal edges, and (b) vertical edges.

Each of two above convolution masks is separable into a few directional filters with coeffi-
cients [1,—2,1]. This is an important property, because the determination of edge orienta-
tions is essential in various interpolation and filtering steps to avoid processing errors.

Figure 1.14 shows the result of edge detection in horizontal and vertical directions. As
can be seen, the directional edge operators differ significantly in their response to structural
content in an image. Therefore, a number of image processing algorithms aim at detect-
ing edge orientation first and then performing the processing operation along an edge in
order to preserve it. This concept is quite common in camera image processing such as
demosaicking, image resizing, and filtering.

1.5.3 Spectral Characteristics

It was already shown in Figure 1.13a that images consist of regions where neighboring
pixels are well correlated in a spatial sense. It is also common that small regions in natural
images are well correlated in a spectral sense; meaning that the different color channels
in these regions exhibit similar dynamics which basically relates to structural content of
the image. As shown in Figure 1.13b, significant spectral correlations can typically be
observed in slowly changing regions whereas spectral correlations are lower in regions
with color edges. A number of camera image processing steps, such as those based on
interpolation, filtering, and color manipulation concepts, operate based on the assumption
of significant spectral correlation among RGB planes of natural color images, utilizing
spectral characteristics of the captured image during its processing.

Chromaticity is one of the most characteristic features of color pixels. It relates to the
directional characteristics of the three-component vectors representing color pixels in an
RGB space [63], [64]. Thus, it is reasonable to assume that two color vectors X(r,s) and
X(; j) occupying spatially neighboring locations (r,s) and (i, j) have the same chromaticity
characteristics if they are collinear in the RGB color space [2]. Based on the definition
of dot product x5 X; j) = M, Mx, , cos ((x( ),X(i7j)>), where (X(),X(; j) denotes the
angle between RGB color Vectors X(,,S) and X(i,j)» the following can be implied:

Zk 1 X(r9)kX (i, )k

(X(5):% (i, \/Zk - \/zk X

=1 (1.8)
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The above concept can be further extended by considering both magnitude and direc-
tional characteristics of color vectors, as they are both essential for human perception. It
was shown in References [65] and [66] that this can be achieved by enforcing the un-
derlying modelling principle of identical color chromaticity on linearly shifted variants of
vectors X(,s) and X; jy:

Zk 1( rsk""’}/)( (l])k+y)
\/Zk 1 rsk+y \/Zk 1 l]k+Y)

=1 (19

(X(rs) + X jy) + ) =

where I = [1,1,1]7 is a unity vector and X(..yk + 7 is the k-th component of the linearly-
shifted vector [x(..) + Y] = [x(..y1 + V.X(..;2 + V.X(..;3 + V] The linear-shift y is a design
parameter which controls the influence of directional and magnitude characteristics of color
vectors during processing. It can be shown that any component of RGB vector x(,.;) can
be derived from Equation 1.8 or Equation 1.9 based on two other components of x,.;) and
all three components of x; ;) by solving the quadratic equation problem. Using full-color
information in calculations makes the solution attractive and potentially highly accurate.
Unfortunately, the required number of multiplications may prevent implementation of the
solution in current real-time camera imaging pipelines.

To reduce the complexity, the concept behind Equation 1.9 can be applied to two-
component vectors which can be created from RGB color vectors by omitting one of their
three components. It is straightforward to show that for two-component vectors, each com-
prising one luminance (G) component and one chrominance (R or B) component, the ap-
proach reduces to the following:

X(r,s)k +v _ X(rs)2 +v
XtV XtV

(1.10)

where k = 1 refers to R components whereas k& = 3 refers to B components. This constitutes
the normalized color-ratio model [67].

Setting a design parameter to Y = 0 and Yy — oo, respectively, allows for further simpli-
fication of the above expression. Namely, for ¥ = 0, it reduces to the color-ratio model of
Reference [68]:

— == (1.11)
Xk X(i,j)2
whereas for Y — oo, the color-difference model of Reference [69] is approximated:
X(p.a)k — X,k = X(p.g)2 —X(i,)2 (1.12)

Both Equation 1.11 and Equation 1.12 constitute early, yet still popular spectral modelling
approaches due to their relatively good performance and high computational efficiency,
which is particularly true for Equation 1.12.

Spectral models presented in this section can be used in a number of color image pro-
cessing operations. The most typical ones are those based on interpolation and filtering
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FIGURE 1.15

Typical color-based approaches in digital camera image processing: (a-c) luminance-chrominance approach
and (d-f) color-difference approach. These approaches were applied to a color image shown in Figure 1.5¢e to
obtain: (a) luminance image, (b,c) two chrominance images, (d) green-red color difference image, (e) green-
blue color difference image, and (f) red-blue color difference image. Middle intensities in images of (b) to (f)
correspond to zero values of displayed signals; low and high intensities correspond to negative and positive

signal values, respectively.

concepts; however, spectral modelling also helps in white balancing and image compres-
sion. In general, any spectral modelling driven processing operation can be defined as
follows:

X(rs) = A_l (X(r,s),f(A(X(i,j));(i:j) € C)) (1.13)

where A(-) and A~!(-) denote, respectively, spectral modelling and inverse spectral mod-
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elling functions and f(+) is the processing operation performed in the spectral domain over
the samples in the neighborhood defined by {. In many demosaicking solutions, f(-) takes
the form of an averaging-like operation performed on color difference quantities achieved
via A(x(; )), for (i,/) € €. In this case, A(-) can perform the subtraction of the chromi-
nance component from the luminance component of x; ;), thus implying that A~Y(-) adds
the chrominance component of x,.;) to the output of f(-) in order to obtain the resulting
luminance component of X ).

Spectral modelling is not the only color-based approach used in digital camera image pro-
cessing. A number of processing steps, such as demosaicking, filtering and compression,
can operate by first transforming the color data into one luminance and two chrominance
components, and then performing the processing operation on luminance and chrominance
signals separately. The final RGB color image is obtained through the inverse transform of
processed luminance and chrominance images. Figure 1.15 allows for comparison of both
approaches. As can be seen in Figure 1.15a, the luminance image contains almost com-
plete structural content of the color image shown in Figure 1.5e. On the other hand, as seen
in Figure 1.15b to Figure 1.15f, both chrominance and color-difference images lack most
details and small edges, suggesting that these signals have a low-pass nature. Processing
images with such reduced structural content can mitigate the processing error and allow for
higher performance compared to when operating directly on RGB color channels.

1.5.4 Temporal Characteristics

Compared to images, digital video has an additional dimension, as it consists of two-
dimensional images or frames captured in a certain period of time. This suggests that
processing digital video may require an extension to traditional approaches for still images
for more dimensional signals or using special approaches to effectively deal with its unique
temporal characteristics. These additional characteristics can be expressed as changes be-
tween consecutive frames. Typically, most of these changes are caused by the motion,
either of objects in the scene or both camera and objects. Therefore, popular video process-
ing techniques aim at deriving motion information first and then adjusting the processing
operation accordingly in order to prevent motion blur and artifacts and to increase perfor-
mance. To avoid problems found when processing still images, temporal characteristics
should be used together with spatial, structural and spectral characteristics, taking advan-
tage of different types of correlations. Detailed discussions on typical video-processing
issues in digital cameras can be found in Chapters 18 to 20.

1.6 Conclusion

This chapter aimed at summarizing the fundamentals of single-sensor color imaging and
digital camera image processing. The concept of sampling visual information using a color
filter array placed on top of a monochrome image sensor became one of the most important
developments in the history of digital imaging due to its good performance, effectiveness,
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and relatively low cost. Therefore, it is no surprise that this concept plays a key role in
popular consumer electronic devices with image-capturing capabilities, such as digital still
and video cameras, mobile phones, and personal digital assistants, and that many color
imaging applications, for example, digital photography, printing, visual communication,
machine vision, digital cinema, medical imaging, and astronomy, benefit from using such
devices.

As described in this chapter, the data captured by a color filter array sensor architecture
has to undergo a number of image processing steps in order to produce digital photographs.
These steps constitute the digital camera image processing pipeline and can be implemented
in imaging devices or performed on personal computers, thus flexibly providing the user
with a number of options. In either case, each processing step has its own design, perfor-
mance, and implementation challenges. Most of these challenges relate to effectively using
information available in captured visual data in order to produce visually pleasing finished
images in the output of the pipeline. Thus, the utilization of the spatial, structural, spectral,
and even motion characteristics is essential in modern imaging systems which attempt to
mimic human perception of the visual environment. Meeting such objectives requires large
efforts in designing the pipeline which achieves the best collaborative effect of its compo-
nents and is reasonably robust in order to deal with the infinite amount of variations in the
visual scene.
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2.1 Introduction

Many versatile point-and-shoot digital cameras, which support attractive functions with
satisfactory system performance, have been announced in the consumer electronics mar-
ket [1], [2], [3], [4]. However, camera system designers still suffer from the difficulty of
lacking hardware architecture standards and good software design methodology. Accord-
ing to the product definition, camera designers must carefully select several key hardware
components such as camera signal processor (CSP) [5], [6], [7], [8], [9],[10], [11], lens
module [12], [13], [14], [15], [16], charge-coupled device (CCD) [17], [18], [19] or com-
plementary metal oxide semiconductor (CMOS) image sensor [20], [21], [22], analog front
end (AFE) chip [23], [24], and liquid crystal display (LCD). Among these components,
CSP plays the most important role for the entire system. A typical CSP consists of an
embedded microprocessor (EMP), hardware engines, peripherals, and other programmable
computing units such as digital signal processors (DSPs) for real-time image/video pro-
cessing. The scheduling as well as the allocation for these heterogeneous computational
resources is quite a complex issue in embedded software design.

In recent years, the functions demanded for digital cameras have grown very numerous
and complex. Development time is forced to decrease and maintaining the entire software
system becomes more and more difficult. Many integrated signal processors have been
proposed for simplifying the design of digital still cameras (DSCs), but very few systematic
software platforms are available to support the development of multi-function DSCs [25],
[26]. The lack of a standard software platform defined in industry remains a significant
obstacle in developing digital cameras. The embedded software team should construct
several software systems for a variety of camera models that are designed with specific
CSPs. It is estimated that up to 60% of the development time may be spent in software
coding and thus the software design phase has become a bottleneck in developing a DSC.

A modern digital camera is no longer a simple imaging system. Other than some basic
functions such as capture, playback, display and storage, a high performance camera sup-
ports many attractive functions while satisfying miscellaneous timing constraints and the
power budget. Namely, the supported features include digital zoom in both capture and
playback mode, continuous shots with instant audio recording, MPEG video/audio com-
pression and real-time data streaming, direct print that incorporates output formatting and
color postprocessing, and parsing or preparing configuration files for the captured pictures
such that they can be mailed out and printed automatically from a personal computer (PC).
Some of the functions listed above tightly depend on the resolutions of the image sensor and
display device. Without a good software architecture design, changing part of these devices
may result in effects that the current software system might not be able to accommodate.

Apart from camera functionality, performance is also important for a camera system.
The speed of capturing an image as well as the response time of human machine interface
affects the evaluation of a camera. An advanced consumer DSC supports fast continuous
shots, recording audio at the same time, and runs fast auto-exposure (AE) [27], [28], [29],
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auto-focus (AF) [30], [31], [32] between successive shots. Such a camera has to handle
start and stop of audio recording, immediate capture of the next picture, and data storage
while avoiding accidentally recording the sound of the mechanical shutter. On the other
hand, the user may want to have fast response from the camera whenever they press but-
tons. It is particularly critical to have a short delay from pressing the shutter button to
actually taking an instant image. The challenge behind this performance index is that many
tasks are executed simultaneously, including periodic AE and automatic white balancing
(AWB) in preview mode, pre-capture exposure/focus estimation, fine resolution image raw
data readout, audio recording, image processing, key scan task, and real-time streaming of
compressed data.

A robust embedded software platform, that has good flexibility in accommodating these
changeable hardware components and software modules, would be key in producing ver-
satile digital cameras. In addition to advanced functions supported by cameras and the
performance requirements, from the viewpoints of system designers, the most important
features of an ideal embedded software platform include flexibility, reusability [33], [34],
[35], [36], and calibration/diagnosis capability [37]. This chapter describes an integrated
embedded software platform for developing consumer DSCs. Although different camera
models possess diverse graphic user interface (GUI) or adopt different key hardware com-
ponents, many functions are common for all cameras, even if they might be implemented
with different operations. The platform should be reusable when some of the hardware
components are replaced or the image resolution is changed. Furthermore, an ideal software
platform must utilize common functions for both normal operation mode and engineering
modes that can calibrate camera parameters and diagnose/verify the system specifications.
Each camera instance can be calibrated in the production line without connecting to any
computers, thus the number of computer based test fixtures can be drastically reduced.

2.2 Hardware Platform Overview

The hardware organization of a typical consumer camera system is shown in Figure 2.1.
The image captured from the CCD/CMOS sensor is stored in synchronous dynamic random
access memory (SDRAM) first and then processed by the CSP. On the other hand, audio
is recorded from the microphone and converted into digital signals through an analog-to-
digital converter (ADC). The audio/video data that pass through signal processing as well
as compression are finally stored in the internal flash memory or external flash cards. The
color LCD provides a friendly GUI for viewing the pictures to be taken in the field. A
few DSCs support the functions of printing the pictures directly to printers through USB
interface in the host or slave mode. This direct print mode enables connection to some
specific printers and makes the print operation simpler without having to clumsily set the
print mode.

In the following subsections, several key components of a camera system are introduced:
the lens module, the image sensor, and the color image signal processor. Meanwhile, the
design considerations of AF and AE algorithms are also discussed.
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The hardware organization of a consumer digital camera. (©) 2005 IEEE

2.2.1 Zoom Lens Module and Auto Focus Control

A zoom lens allows the photographer to change view angles at the same spot. Using
zoom lens cameras, the photographer does not need to bring many lenses with different
focal length while taking pictures in different view angles. In general, with longer focal
length, the view angle is narrower and more image details in a smaller area can be captured
clearly. On the other hand, with shorter focal length, a wider scene can be captured but the
resolution for the same object becomes lower.

Since every lens has limited depth of field (DOF), the distance in the object space that
can be projected clearly on the image plane is limited. In order to capture scenes at different
distances, the image sensor position has to be adjusted to make the projected image of the
main subject fall accurately on the sensor. This action is called auto focus (AF), and in
practice the lens is moved instead of the image sensor because controlling the lens motor is
much easier.

2.2.1.1 Overview of Zoom Lens Control

A zoom lens is usually composed of several groups. As the individual groups of the
lens move along the optical axis and change the relative distance among them, the effective
focal length (EFL) of the lens will be changed. The relation of the zoom position and the
corresponding EFL is inherently nonlinear, but lens makers are always able to provide a
look-up table (LUT) of EFL versus motor positions for the software designer to use. To
simplify the zoom lens control, most manufactures split the range of zoom motor motion
into a few steps and the control LUT contains only the data for these steps. In practice, it is
possible to design some test patterns to calibrate the EFL values versus the motor positions.

The so-called zoom ratio is actually the ratio of the longest EFL to the shortest EFL.
For example, if the range of the EFL for a digital camera is 5.8 - 17.4mm, the zoom ratio
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is 17.4/5.8 = 3. It is then marked as a 3x zoom lens. When the subject is far from the
camera, it is approximately true that when the EFL is switched from 5.8mm to 17.4mm,
the image width is increased to about three times. Note that changing the EFL of a zoom
lens also changes the effective aperture value. Longer EFL results in smaller aperture and
larger F-number. The main issue with different F-numbers is that the light intensity falling
on the image sensor will be different and the AE algorithm needs to take this change into
account while changing zoom steps. For consumer digital still cameras, the AE algorithm
relies on the image sensor to sense and analyze the brightness of the scene. This issue
is automatically taken care of and thus changing F-number is not a big problem for AE
control.

Changing EFL also affects the characteristic of lens fall-off. The problem of lens fall-off
means that the light intensity at the corners of a lens is typically lower than the intensity
at the center. Lenses with shorter EFLs have obvious fall-off problems. An approach to
dealing with this issue is to perform lens fall-off compensation in the image processing
pipeline, in which different compensation factors can be applied at different zoom steps.

The relationship between EFL and lens position is usually nonlinear. As the zoom motor
is moved, the focus position will be also changed such that the focus needs to be read-
justed. However, enabling both zoom motors and focus motors at the same time may cause
temporarily very high power consumption. Hence zoom motor and focus motor are not
enabled simultaneously in practice, and a fine AF adjustment is executed to achieve a more
accurate focus after the zoom motor stops at the target position.

2.2.1.2 Design Considerations of Auto Focus Algorithms

Auto focus is usually achieved by moving the lens to multiple focus positions and taking
several test images to evaluate the focus conditions. A better focus condition means that an
image keeps more image details. The focus condition is either called focus index (FI) or
figure of merit (FOM), which are usually implemented with a two-dimensional high-pass
digital filter.

In traditional photography, a small region of interest (ROI) is defined at the center of
the image and AF program only evaluates the FOM at this ROI. The photographer must
point the camera to the main subject to make correct focus. The camera scans several focus
motor positions and the FOM value is calculated for each position to generate a focus curve
as shown in Figure 2.2. The peak of the curve is usually regarded as the best focus position.

Several ways have been proposed to speed up the process of finding the best focus posi-
tion. One is to estimate the slope of the curve and determine the next point of focus trial
with a better increment. The coarse search step in AF is according to the DOF of the camera
in the current zoom step. When the curve changes direction, it means a local peak has been
found and the remaining process is to fine search the peak position in the focus curve. A
modified approach is to use a second order polynomial curve fitting to fast predict the peak
of the focus curve after coarse search. This approach provides a promising search result in
general conditions and has been widely applied in designing commercial cameras. On the
other hand, advanced digital still cameras frequently use a larger ROI for AF. The ROl is
split into a few smaller regions and the FOM value of each region is calculated individually.
Then these FOM values are compared and a best focus is selected.
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The figure of merit (FOM) curve in auto focus.

2.2.2 Image Sensor and Auto Exposure

2.2.2.1 Overview of Image Sensors

There are two popular types of commercial image sensors, charge-coupled device (CCD)
and complimentary metal-oxide-semiconductor (CMOS) image sensor. In both types of
image sensor, the transducer is a photo diode coupled with a capacitor. The difference be-
tween them is the way of transferring the image signals to the outside circuit. When light
falls on the sensor, some photons are absorbed by the silicon and electron-hole pairs are
generated. The sequence of electron-hole pairs forms an electric current, which is in gen-
eral proportional to the light intensity falling on the photo diode. The charge accumulated
in the capacitor is the integration over time of the current flowing into it. Since the current
is proportional to image light intensity and the output voltage is proportional to the accu-
mulated charge, it can be deduced that the output voltage of a photo diode is proportional
to the product of image light intensity and the integration time. The integration time of a
photo diode is controlled by its reset timing. The control circuit periodically sends a reset
pulse to clear the charge accumulated in the capacitor. When the effective exposure starts,
the control mechanism simply stops the reset signal and the newly generated charge will be
accumulated. This exposure control mechanism is also called electronic shutter.

The end of the exposure procedure is achieved by connecting the capacitor to a sense
and read amplifier through another transistor. After the voltage is sensed and converted to
a digital value, the photo diode capacitor is cleared again and the next exposure procedure
can be started. This kind of electronic shutter is very precise and controlling extremely
short durations is possible. The shortest exposure time of a traditional mechanical shutter
is around 1/2000 second, while electronic shutter can easily achieve 1/50000 second of
exposure time resolution.

There are several different architectures of CCD design, including frame transfer, full
frame transfer, frame interline transfer, and interline transfer. The most popular architecture
adopted in consumer cameras is the interline transfer which is shown in Figure 2.3. The
pixels are arranged as a two-dimensional array. Between neighboring vertical lines of the
photo diodes, there is a line of vertical CCDs which are masked by a metal layer and will not
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Basic interline transfer CCD architecture.

respond to incident light. The pixels in the entire frame are exposed and the accumulated
charges in the photo diodes are transferred to the neighboring vertical CCDs at the same
time. The pixel charges in each horizontal line are then shifted vertically downward to the
horizontal CCDs. Finally, the signals stored in the horizontal CCDs are amplified and sent
out in pixel rate.

The main difference between CCD and CMOS image sensors is that CMOS sensor lacks
charge buffer as the readout mechanism. Once the exposure is completed, the charge is
read out immediately. Since there is at most one row of ADCs at the bottom of the pixel
array and the data readout is also sequential, only one row of the pixels can be read out
at a time. The exposure of the second row must be completed exactly at the instant of
the first row readout completed and so on for the remaining rows. In order to keep the
exposure time for all rows of pixels to be the same, the start of exposure for each row
also has to be adjusted accordingly. As a result, the entire image array is not exposed at
the same time. The exposure mechanism is called rolling exposure, with the upper rows
exposed earlier and lower rows exposed later. The impact of this rolling exposure is that
the image captured will be distorted if the subject moves horizontally. That is, a vertical
line will become slanted. This effect is especially significant when the resolution of the
image is larger, because the time lag from the first row to the last row is longer than in low
resolution sensors.
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The dynamic range of the image sensor and the problem of auto exposure control.

2.2.2.2 Design Considerations of Auto Exposure Algorithms

Although high quality CCD/CMOS sensors have a larger dynamic range, most com-
mercial imaging systems have narrower exposure latitude than color negative films. The
dynamic range of a camera system is usually limited by the noise of the sensor as well
as the precision of the ADC. The luminance level in the brightest area can be millions of
times of that in the darkest area. When taking pictures in typical scenes, the dynamic range,
which refers to the ratio of the highest and lowest level of light intensities, is usually higher
than what most image sensors can measure.

Auto exposure (AE) is to determine the suitable aperture size, gain setting, and expo-
sure time such that the exposure value best fits the dynamic range of the current scene.
As shown in Figure 2.4, the luminance distribution of the scene is wider than the dynamic
range of the sensor. Consequently, exposure needs to be adjusted in order for the sensor to
capture proper range of luminance data. E;, E;, and E3 represent three different exposure
conditions. If selecting Ej, many pixels corresponding to the dark area are underexposed
so that their output codes are zero. On the contrary, selecting £3 may produce lots of satu-
rated pixels whose values are clipped to the maximum output of the ADC. The brightness
information is also lost. Therefore, a proper adjustment of exposure is needed to acquire
more brightness information from the scene.

Typical AE algorithm adopts the additive system of photographic exposure (APEX) sys-
tem [38]. Under APEX system, the relationship between the shutter time, aperture, lumi-
nance level and camera sensitivity is stated as follows:

A}/T, = B,Ss/K (2.1)

where A represents the F-number of the optical lens, 7 is the electronic shutter time (or
exposure time), By is the scene brightness, Sy is the sensitivity of the camera, and K is a
scaling factor. In practical system design, a [og, data system is used for computational con-
siderations. The unit under this data system is usually expressed as exposure value (EV),
which means a difference of 1 EV is equivalent to change the shutter time by two times.
The task of AE control is interpreted as follows: Given a good brightness measurement By
of the current image, find a proper combination of Ay, T;, Sy, and By to capture another
image such that the exposure in the new image is optimal.
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Auto exposure: (a) an example of the weighting matrix, and (b) auto exposure control curve. (©) 2005 IEEE

In preview mode, the brightness is measured based on the raw data of CCD sensor oper-
ating in draft mode in which only a few data lines rather than the entire sensor data are read
out. Since the importance of different areas in the scene usually varies, a popular approach
is to evaluate the importance index by analyzing the stability of brightness. As shown in
Figure 2.5a, the raw image is further divided into 5 x 5 regions and the final measurement
result is calculated based on the weighted values.

The adjustment of exposure time and gain setting must be performed before the next
frame starts its exposure. A typical adjustment algorithm is based on the lookup curve
shown in Figure 2.5b. In this figure, the slanted lines represent different scene brightness
and the AE algorithm should move along the AE curve to find the proper combination of
aperture size, exposure time, and gain setting. In the example, when the scene brightness
increases, the algorithm will follow the solid trace, initially keeping the large aperture while
reducing the exposure time. Then the algorithm switches to a smaller aperture at EV13
and increases the exposure time in order to maintain the same exposure. When the scene
brightness increases further, the algorithm will keep with the same smaller aperture but
further reduce exposure time. The reverse is similar but slightly different. As the scene
brightness decreases, the algorithm will hold the same small aperture while increasing the
exposure time to match the exposure. However, the algorithm will not switch aperture
setting until it reaches EV11. In practice, the exposure time in this instance is 1/60 second
to prevent the image blur problem. Note that the sensor sensitivity as well as register setting
is usually different for draft mode and fine mode. The final exposure value for capturing
still image must consider this factor which should be provided in the specification of the
image sensor.

2.2.3 Camera Signal Processor

A CSP is designed for fast processing of massive image, video, and audio data and pro-
viding various peripherals to support user interaction and various IO extensions. Versatile
camera features are realized by utilizing these hardware resources together. Figure 2.6
shows a block diagram of a typical CSP which includes EMP, DSP, peripherals and other
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FIGURE 2.6

A typical color image signal processor (CSP).

engines. The EMP hosts the entire camera system, such as OS scheduling, interrupt han-
dling, and interfacing to IO connection of the DSC system. The DSP, as its name shows,
excels in executing signal processing programs. A multi-core solution provides the possi-
bility of running jobs in parallel. Although performance is boosted in parallel processing
with the multi-core architecture, the difficulty in controlling the cores also rises. The de-
signer should carefully study the inherent property as well as limitation for each hardware
resource.

An EMP is especially suitable for executing conditional branches, such as if-else, or
switch-case statements. Most EMPs used in digital cameras are designed with a reduced
instruction set computer (RISC) architecture. Although the EMP is able to execute most
camera functions, it still cannot outperform a programmable DSP while processing image
and video data. The EMP requires more instruction cycles to process visual data, while a
DSP is particularly efficient for processing the data with the same properties by the same
algorithm. A typical DSP has four or more high speed multiply-accumulator (MAC) units,
hardware looping, and several on-chip memory buses. This is why multiple image and
video data streams can be processed simultaneously in a DSP.

In addition to a programmable DSP, several dedicated engines might be included in a
CSP for compressing image/video data following popular standards. Each engine can only
execute one type of computation. They may include discrete cosine transform (DCT), quan-
tizer/dequantizer, or variable length (VL) coding engines. Although the programmable DSP
can also do these computations, providing these engines definitely provides the advantage
of realizing parallel processing of visual data in pipeline stages.
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Previewing scenes at 30 frames/second is a basic requirement for a DSC. However, the
performance of a programmable DSP may not be high enough to satisfy this requirement.
A specific functional module called preview or live view engine/accelerator is often built
into the CSP to support camera preview and video recording modes. Since the live view
engine processes raw CCD data to a formatted image, it is actually a fairly simple image
pipeline. When the formatted data are generated from the live view engine, the OSD engine
manages the display, and writes the data to LCD driver for display.

The role of the SDRAM controller and direct memory access (DMA) controllers is to
manage data I/O among the processors, peripherals, and external SDRAM. Many hardware
modules, including the live view engine, on-screen display (OSD) engine, DSP, and EMP,
are connected to the SDRAM controller. However, transferring a large amount of data
under the control of the EMP is too slow to satisfy the timing requirements. A CSP is often
equipped with several DMA units to solve the bottleneck problem regarding data transfer
among different hardware devices. The DMAs efficiently transfer blocks of data between
SDRAM and the DSP or peripherals.

2.3 Embedded Software Platform

Although most camera functions are executed by several specialized hardware engines,
software plays an increasingly important role in the design of camera systems. By increas-
ing the range of software layout, it is possible to gain several advantages, like flexibility to
change hardware components or add new user operations. The use of software facilitates
reuse of previously designed software modules, independent from the selected hardware
platform. The objective of design reuse can be achieved by designing the software modules
at a processor and real-time operating system (RTOS) independent abstraction level.

In this section, an embedded software platform for developing versatile camera systems
is described. For improving the programmability and reusability, the platform is divided
into three programming layers and two interfaces: application layer, functional layer, sys-
tem layer, application program interface (API), and device driver interface (DDI), as shown
in Figure 2.7. To keep the application-specific features independent from the functional op-
erations, program development of the application layer is based only on those APIs which
are supported by the modules in the functional layer. No other lower level functions can
be called by the modules in the application layer. This prevents the top-level routines from
directly executing lower level operations or accessing hardware resources directly without
being protected by any mechanisms. Direct function calls may result in an unpredicted
state transition that may make the system hang in an unknown state. Even the modules in
the functional layer can only call the service from other modules through API calls.

2.3.1 Software Programming Layers

In the application layer, two modules — GUI and manufacture/calibration interface
(MCI) — are executed independently with their own control flows. The state diagram,
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An example of an embedded software platform for digital cameras.

data flow, and dynamic behavior of the GUI module are customized by the GUI design
specification. A typical GUI design specification defines the operational modes as well as
their state diagrams. The common modes include system initialization, preview, still image
capture, playback, video recording, direct print, and connection to a computer [39]. Al-
though the GUI module is designed as several state machines, each of them is scheduled
by one dedicated task. Once the user presses the shutter button, the GUI task will receive a
message, and the message will be passed to a specific submodule in the GUI module.

The operational flow design of the MCI module is based on the manufacturing process
adopted in the production lines. Its objective is to achieve high throughput, good product
quality, and better production reliability. A good approach to designing MCI is to define
common interfaces between computer and camera for the manufacture and calibration re-
lated APIs. Hence the MCI modules can be controlled by computer through a USB cable or
operated by function calls inside the camera. Based on this approach, production engineers
or line operators can monitor the manufacture/calibration progress and collect production
data.

In the functional layer, some modules are designed to support versatile camera functions
such as master state engine (MSE), still image capture, audio annotation, playback, man
machine interface, USB, MPEG video and audio, and direct print. Each module runs under
the scheduling of one or more tasks, which contain their own message boxes, state dia-
grams, and data flows. Each particular operation, such as still image capture with audio
annotation or MPEG video and audio recording, is implemented with APIs supported by
one or several functional modules. The communication between two modules is through
message boxes or event flag settings.
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In the system layer, the major design objectives are hardware abstraction and software
programming environment construction. Since many cameras have similar hardware ar-
chitecture with different types of image sensors, color LCDs, and flash cards, the software
related to these key components should be designed as a configurable or replaceable one.
Most of the code in the upper programming layers is reusable. In addition, by running the
system with an RTOS, the programming environment can separate upper level functional
operations from the detailed timing scheduling and file allocation mechanisms.

2.3.2 Software Design Reuse

The difficulties of embedded software reuse come from the following facts. i) The hard-
ware components, such as zoom lens, CCD sensor, color LCD modules, analog front end
chip and the type of storage cards, might be replaced while the next generations of digital
cameras are being developed. ii) The CSP or RTOS may be changed for performance or
cost considerations. iii) The design of the GUI flow is unique for each camera series in
order to differentiate their product lines. The design team must develop a new GUI module
for a new camera series. iv) A robust camera development platform must provide manufac-
ture and diagnosis interfaces such that the design engineers can monitor device calibration
parameters and system performance indices.

In order to maximize software reuse, the embedded system platform is abstracted at
a level where the basic functional modules can utilize a device-independent interface to
the hardware. The application software, which implements various GUI specifications, is
designed by simply ignoring the implementation details of timing, scheduling, and resource
allocation on the physical hardware platform.

Figure 2.8 summarizes the basic idea of a camera embedded software platform. Given
a new camera system specification, designers first map the specification onto the hardware
platform by choosing a suitable family of hardware key components. Then the designers de-
velop drivers for specific components and link them with those predefined DDI functions.
In the meantime, the application programmers analyze the GUI specification and design
their state machines, menu system, and artwork. The key to concurrent hardware and soft-
ware development is these predefined API/DDI functions, which abstract the behavior of
functional modules and isolate hardware specific features and their implementation details.

2.3.3 Application Program Interface

The application program interface (API) provides a unique abstract representation of the
functional modules with the implementation details hidden. With such APIs, the applica-
tion software can easily be reused while developing new products. It is also possible to
change the program modules located in application and functional layers for accommodat-
ing new applications features. A simple way to implement an API is:

API _ModuleName_FunctionName ()

{

SendMessage (ModuleName, FunctionName) ;

WaitMessage (ModuleName, Finished);
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The design reuse of a camera embedded software platform. (©) 2005 IEEE

In such an implementation style, an API may not include the exact execution code to the
functions it needs to execute, but it only sends a message to a specific module that executes
the requested function. The module receiving the message will be invoked and switched
into the ready state to carry out the task. It is worth noting that a task calling such an
API will be switched to the blocked state and can only be reactivated after it receives the
task-finishing message.

One problem that might occur while a task calls such an API is that the task cannot
run any other code until it receives the task-finishing message. A periodic task, which is
automatically invoked by a timer interrupt, monitors camera status and can send requests
to stop the running processes. This task only triggers other modules but does not wait for
responses. Therefore, it should not be blocked by any RTOS mechanisms.

2.3.4 Device Driver Interface

Similar to API design, the device driver interface (DDI) provides an abstract represen-
tation of the hardware device or hardware platform instances. The DDI isolates device-
specific features and unifies device behaviors such that the program in the functional layer
can execute without considering the types of device (e.g., storage media) in the system. The
only thing needed to be modified is the low level driver that directly controls the storage
cards. All program functions that access data from storage cards should be kept the same
or only have minor changes.
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2.4 Software Design Methodology
2.4.1 Task Scheduling by Real-Time Operating System

A modern camera executes several functions simultaneously to fully utilize all available
resources on the hardware platform. Embedded software equipped with a real-time oper-
ating system (RTOS) to schedule all jobs is common in most of digital cameras. Unlike
other powerful real-time kernels, the RTOS adopted in digital cameras is usually a scalable
one in which only those services actually used by the camera are brought into the run-time
image. The RTOS is loaded and executed by the EMP, yet jobs scheduled by RTOS are not
only those running on the EMP but also those on the DSP or hardware engines. The RTOS
achieves the illusion of concurrent processing by rapidly switching EMP among tasks and
each task manages some jobs in a software module or controls the allocation of a hard-
ware engine. Resource control mechanisms such as semaphores or event flags provided by
RTOS are commonly used for maintaining the execution sequence of the required jobs.

As shown in Figure 2.9, a task can be in the running, blocked, or ready state, and four
transitions are possible among these three states. Transition A occurs when a task is waiting
for an occupied resource or a required event flag that has not been triggered. When the
resource is available or the event occurs, transition B occurs. If no other task is running at
the instant, transition C will be triggered and the task will immediately enter the running
state. Transition D occurs only in preemptive scheduling scheme. It happens when the
scheduler decides that the running task has occupied a resource long enough, and it is time
to release the resource and activate another task. Note that transition D will not happen in
non-preemptive scheduling. The task can only release the resource after it is finished or it
is blocked when transition A occurs.

Preemptive scheduling is more powerful than non-preemptive, but the analysis of state
transitions and resource allocations becomes more difficult than in non-preemptive schedul-
ing. This is due to the fact that the running sequence for a specific operation scenario is
unpredictable. It is more difficult to predict and meet timing constraints if using preemptive
scheduling on a camera. Although RTOSs may allow assignment priorities for a task, it is
infeasible to dynamically change the priority of a task to meet the timing constraint for
different scenarios.

blocked

FIGURE 2.9

The states of a task.
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Sequence diagrams: (a) the sequence diagram of auto exposure in preview mode, and (b) the modified sequence

diagram of auto exposure in preview mode.

Non-preemptive scheduling with the addition of some exception handling mechanisms
is another good approach to digital camera design. Non-preemptive scheduling can cope
with the difficulties of designing, debugging, reliability testing, and timing optimization.
The main drawback of non-preemptive scheduling is that the task may occupy EMP re-
source if it is trapped in an unknown state or an infinite loop. Fortunately, such software
issues or bugs can easily be detected in the development and verification phase. The timing
constraint problem can be solved by adding extra code to interrupt routines with time-
consuming jobs.

The software modules located in functional or application layers are managed by one
or more dedicated tasks. With scheduling by RTOS, these tasks run independently. The
initial state of a task is set to the block state and it can only be invoked by a message sent
from another module. A typical example is where one task sends a specific message to
another task to trigger a specific action. Figure 2.10a shows an example of the interactions
of auto exposure with sequence diagram in unified modelling language (UML) notation.
The preview task sends a message called CALCULATE to trigger the evaluation task after
the CCD raw data readout is completed. After the evaluation task finishes the calculation,
it sends the evaluated exposure value back to the preview task. The preview task sets the
new CCD exposure time according to the evaluated exposure value.

Figure 2.10a shows a simple sequence diagram for auto exposure, which is executed by
the EMP but the DSP is not involved. An alternative design is that the evaluation task run-
ning on the EMP establishes communication between the EMP and the DSP. The task does
not evaluate the exposure value. Instead, it only handles the DSP resources and enables
the DSP to calculate exposure value. A modified sequence diagram shown in Figure 2.10b
shows the parallelism of running the EMP and the DSP simultaneously. While the DSP is
calculating the exposure value for the previous frame, the preview task, which is executed
by the EMP, sets the new exposure and gets the next frame data.
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2.4.2 DSP Subsystem Management

Due to the program memory size limitation of the DSP subsystem, the DSP program is
partitioned into several sections which include preview and capture, playback, and MPEG
video/audio recording. Only one section is loaded into the DSP at a time according to
the current camera operation mode. The interactions between the EMP and the DSP are
through interrupts, where both the EMP and the DSP have corresponding interrupt service
routines (ISRs) to handle the communication.

Since a software module running on the EMP is driven by messages or events, the ISR
triggered by the DSP will send messages to the corresponding modules. As shown in
following sample code, the module may load the corresponding DSP code first and then
the task will be blocked on waiting for the DSP response. After checking the semaphore,
the routine LoadDSP loads new DSP code. In addition, the event flag was set for con-
trolling the execution of the task. The RTOS function call WaitDSPEventFlag in routine
ProcessStilllmage will block the corresponding task until the DSP finishes its job. This task
can be reactivated only after the corresponding event flag is set again in the ISR. The ISR
is triggered by the DSP subsystem once the assigned jobs are finished.

ProcessStillImage ()

{
WaitSemaphore (DSP) // Wait for DSP resource freed
SetSemaphore (DSP); // Get the DSP resource
ClearEventFlag (DSPFree); // DSPFree is the event flag indicating
// whether the DSP is free or not
LoadDSP (Capture); // Load DSP codes of capture section
StartImageProcess (); // Triggering DSP to run image processing
WaitDSPEventFlag (DSPFree);// Waiting for the completion event flag
}

2.4.3 Hardware Accelerator Management

Several additional hardware accelerators such as a live view engine for scene preview-
ing, a variable length encoder and decoder, and a quantizer and dequantizer for fast image
processing may be included in a CSP. These accelerators play important roles in real-time
image/video processing. The configuration registers in these accelerators are set through
the EMP which also manages the data flow and protects these hardware accelerators from
access by several software modules.

Controlling a hardware accelerator includes the following two steps:

1. The EMP first writes parameters into the corresponding registers of the accelerator.
Then the mode of accelerator is switched from idle state to active state by setting the
activating register. The setting of registers may not take effect immediately, but is
usually activated with a predefined synchronizing signal.

2. The accelerator changes its state from active to idle after completing the job. Two
popular mechanisms are used for checking the state of an accelerator: polling and
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interruption. With the polling method, the EMP runs an infinite loop to check the
ready bit of a control register in the accelerator. This may occupy all computational
resources of the EMP. Using an interrupt would be more efficient than polling be-
cause the EMP can execute other tasks until the accelerator interrupts the EMP.

2.4.4 Dynamic Memory Management

The system may violate real-time constraints if the software uses too many system calls
to dynamically allocate memory from the system heap. When the task executes dynamic
memory allocation routines, the current execution task enters the blocked state for waiting
the service of RTOS. Then RTOS searches suitable free space and allocates the required
memory. For memory size and execution efficiency considerations, most RTOSs adopted
in cameras are quite small. These systems usually lack a sophisticated garbage collection
mechanism to compact memory fragments.

An alternative approach to dynamic memory allocation is handling it in the application
software itself instead of the RTOS. One reason for this is that the memory arrangement for
miscellaneous operation modes is different. Another reason is that the memory allocation
and free operations in the RTOS may not achieve acceptable performance. To solve these
problems, several basic memory allocation strategies can be adopted, including analyzing
the memory usage for each camera mode such that the memory maps are customized for
each mode, or statically assigning memory addresses for larger memory buffers and leaving
the remaining space for dynamic memory allocation.

As shown in Figure 2.11, all camera operations are assigned to four basic modes with
different memory maps in the camera software platform. In these maps, a few large memory
buffers are assigned at fixed contiguous locations and the remaining space is used as heap
memory for dynamic allocation. Since a typical RTOS cannot dynamically change the heap
size and location, the only way to realize the memory allocation strategies is to develop
a dedicated memory management routine that manages the heap size and location itself.
It is particularly useful for USB connectivity mode, because several user functions are
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Examples of the memory maps corresponding to the preview/capture mode, playback mode, MPEG mode, and
USB connectivity mode (from left to right). © 2005 IEEE
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supported when the camera is connected to a personal computer or printer through a USB
cable. The required memory size as well as the partitioning is unpredictable. For example,
the memory buffer can be used for processing several printing pictures with different aspect
ratios or layout formats. It can also process commands for setting an electronic mail with
pictures. With this USB connectivity mode, memory can be allocated flexibly with higher
efficiency.

2.5 Software Module Design Guidelines

The previous section focuses on the general design methodology of an entire software
platform. The remaining important thing is how to design each software module to fully
utilize all available hardware resources such that all jobs are completed within the specified
timing constraints. Studying what hardware resources are available for accomplishing the
desired operations is the first step in the design of a software module. As described above,
a modern CSP integrates several powerful processors and hardware engines into a single
integrated chip. The software running on the embedded microprocessor plays an important
role in the coordination of the execution of all hardware resources.

The programming environment for traditional computers is different from that of camera
systems in some aspects. Although both use operating systems to manage resources, in a
digital camera, several computational resources can be used and many timing constraints
are requested. The camera software designer should analyze available hardware resources
and assign jobs to suitable hardware modules.

2.5.1 Available Hardware Resources Analysis

Analyzing available hardware resources for each camera operation would be the first
step of software module design. The challenge of this step is to assign suitable hardware
resources for specific jobs and to consider the data flow for camera operation. The hardware
engines are controlled and configured through the EMP. The DSP subsystem can perform
operations only after a program has been uploaded into internal program memory. The
program on the DSP can be dynamically changed when the camera is operated in different
modes, and some jobs can be executed in both the EMP and the DSP. The designers should
optimize the system performance by balancing the loading of the EMP, DSP, and other
accelerators. In addition to these engines, a DMA controller and SDRAM controller also
play important roles in sharing data among them.

In order to explain the available hardware resource analysis strategies for software mod-
ule design, two simple examples, previewing image on a display device and MPEG audio
and video playback are illustrated in the following subsections.

2.5.1.1 Previewing Images on Color LCD

The function of the camera preview mode is to show real-time images with exposure and
white-balance corrections. The live view engine is designed to support camera preview and
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The hardware resource allocation in preview mode.

video recording mode. EMP and DSP are only involved in some low complexity calcula-
tions such as auto-exposure and auto-white-balancing that are performed only two or three
times per second. As shown in Figure 2.12, several hardware resources are enabled for pro-
cessing image signals from the image sensor: CCD/CMOS sensors, CCD timing controller,
live view accelerator, SDRAM and its controller, EMP, DSP, video encoder, and color LCD
display. To analyze the resource allocation, a data flow graph is designed in which arrowed
lines represent the data flow of the captured image signals inside the camera:

1. The voltage signals of the CCD are first amplified and digitized by the AFE chip.
By setting appropriate parameters in the CCD controller or timing generator, only
the image data corresponding to the active area of the image sensor are read out and
passed to the next stage.

2. The live view engine processes the image data that are screened by the CCD con-
troller. A simple image pipeline, that performs color interpolation, white balance,
noise filter, color correct, and tone and gamma correction, is included in the live
view engine. This special pipeline aims for fast processing of the data without vari-
ous image enhancement steps. It is rarely used for processing final pictures because
the engine does not include a powerful noise filter, tone and color reproduction that
are typical in CSPs.

3. A few frames are used for AE and AWB measurement each second. The DSP exe-
cutes measurement of scene brightness and color temperature based on the raw frame
data. The EMP reads the estimated parameters, adjusts exposure time of the CCD,
and periodically sets new white balance gains in the engine.

2.5.1.2 MPEG Audio / Video Playback

Since the complexity of decoding MPEG video bit streams is still too high for the EMP,
dedicated hardware modules for inverse quantization and inverse discrete cosine transform
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The hardware resource allocation in MPEG playback mode.

(DCT) may be included in the CSP. The key points of hardware resource allocation and
data flow design include how to fully utilize DMA for transferring data in a background
process and the approach to synchronizing EMP, DSP, and other hardware modules. The
MPEG playback data flow from retrieving the MPEG bit stream to displaying video frames
on the LCD is shown in Figure 2.13 and can be summarized as follows:

1. The compressed MPEG audio and video bit streams are transferred from the stor-
age device to SDRAM through a DMA channel, which is managed by the DMA
controller.

2. The compressed audio and video data stored in SDRAM is uncompressed by the
DSP subsystem. Since the complexity of audio and video decoding is much less than
in the encoding process, both audio and video decodings are usually performed by
the DSP.

3. The decoded data is transferred from the DSP to SDRAM through a DMA channel.
The DMA controller will signal an interrupt once video and audio data is decoded
completely.

4. The decoded video data is displayed on the LCD while the audio data are played
through an audio codec and speaker.

2.5.2 Job Scheduling and Resource Allocation

In a camera system, several software modules may execute simultaneously. The design
needs to consider adopting several modelling tools such as finite state machines, Petri nets,
and the collaboration and sequence diagram. This section introduces one of the tools for
designing digital cameras rather than discussing the technology details of various modelling
tools.
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Job scheduling and resource allocation in cameras can be modelled by a state diagram.
A complete state diagram must have state definitions, input events, state transitions and
output actions. The design of state diagrams may have two alternatives based on user’s and
designer’s points of view. Figure 2.14a shows the design of state diagrams from user’s point
of view. The default state is the preview state in which the camera shows real-time images
with proper exposure and white-balance correction. To explain how to use state diagram for
modelling jobs, a scenario for capturing still images is presented as an example. A digital
camera has two stages of shutter button called S1 and S2. When a user presses button S1,
the camera enters AE/AF lock state (also known as pre-capture state) in which the camera
measures scene brightness and object distance. The state diagram shown in Figure 2.14a is
easily understood by end-users but it is too rough to represent the detailed control flow of
the software module.

Figure 2.14b shows a refined state diagram of the image capture module. There are three
composition states, and each of them is decomposed into several sequential substates. The
default state is the preview state in which the camera performs 3A (AE, AWB, and AF)
periodically. When the S1 shutter button is pressed, the key scan task should detect that
S1 shutter button is being pressed and send a message (S1 Pressed) to the image capture
module. The image capture module stops the current 3A control loop and other activities
of the DSP, and switches to AE/AF lock state after it receives this message. Note that
the preview AE/AWB/AF, pre-capture AE/AF, and image processing pipeline are typically
executed in the same DSP, but only one of them can be executed in the DSP at any one
time. Since the preview AE algorithm is totally different from pre-capture AE, the capture
module task calls Stop3A() routine to stop the execution of periodic 3A task and runs pre-
capture AE one time. When calling Stop3A, the EMP sends an interruption to the DSP no
matter what actions are executed on it. After that, DSP switches to the codes of pre-capture
AE metering immediately. This diagram does not show the execution details of the image
processing pipeline (IPP) but only sends an enabling message to the IPP task by calling the
EnablelPP routine. Execution of IPP is not a real-time job, instead it is only a background
progress. Each of the running jobs in the background processing task can be interrupted
by a shutter button press event. The current status for these jobs will be temporarily saved.
The remaining unprocessed data are queued into buffers until the DSP resource is freed.

The modules located in functional or application layers are allocated by one or more
tasks. With scheduling done by the RTOS, these tasks run independently and their initial
states are set to idle. An idle task can only be invoked after receiving a trigger message sent
from another module. The button press events or hardware and software timer interrupts
are the triggering source of the entire camera system. In order to help illustrate the module
design concept, an example of the programming structure is shown below, in which partial
codes of the module ImageCaptureModuleTask are listed.

The module includes an infinite loop, which waits for messages from the RTOS with the
routine WaitMessage(). The received message will be dispatched to other functions that
handle different messages accordingly in order to perform right actions in current operation
mode. This coding style is the fundamental mechanism of task scheduling without using
preemptions in the software system. For other modules in the application and functional
layers, a similar programming structure is adopted such that tasks do not occupy compu-
tation resources until they receive messages. Note that messages or events are normally
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triggered by external hardware signals or internal timer interrupts. The corresponding in-
terrupt service routines send messages to specific modules. The hardware interrupt sources
include key-press or key-release events, ADC/DAC, real-time clock (RTC), CCD timing
generator and the DSP subsystem.

void ImageCaptureModuleTask ()
{
while (true) {
Message = WaitMessage ();
switch (CurrentState) {
case PreviewState:
PreviewStateMsgFunc (Message);
break;
case AEAFLockState:
AEAFLockStateMsgFunc (Message);
break;
case CaptureState:
CaptureStateMsgFunc (Message) ;

break;

}

void PreviewStateMsgFunc (MSG Message)

{

switch (Message) {
case Sl_Pressed:

StopDSP () ;
EnterState (CaptureState);
break;

case xxButton_Pressed:

2.5.3 Background Processing and Data Buffering

Data buffering plays a key role in background signal processing within the camera. Some
camera operations have tighter real-time constraints than others. Users may be concerned
about response time when they press particular buttons. Among all operations of a dig-
ital camera, color image and video processing and data compression are the most time-
consuming. Fortunately, it is not difficult to design a camera that has faster response to
key press events by leaving previously taken images unprocessed. All unprocessed images
are first queued into a buffer. The jobs of image processing and compression are executed
sequentially and scheduled by the background processing task.
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The design of the background processing task must consider memory requirements, com-
plexity of individual tasks, and the availability of hardware resources. Memory require-
ments are one of the critical issues in the camera and will determine the number of pic-
tures allowed to be left unprocessed in the buffer. For example, storing the raw data for
a six mega-pixel picture requires 12 MB of memory if a 10-bit or higher precision ADC
is adopted. The maximum number of queued images will be less than five if 64 MB is
installed in the camera. Another application case is to record audio/video with unlimited
recording length within the capacity of the storage card. Two ping-pong buffers can be used
to realize parallelism of data processing and data streaming rather than allocating a huge
memory pool in such cases. Since the required memory size for ping-pong buffers is more
flexible, allocating these buffers is much easier and may produce better memory usage. In
the following text, two design cases are stated explaining the concepts of continuous still
image capture and real-time MPEG audio/video recording.

2.5.3.1 Continuous Still Image Capture

An advanced digital camera can take several pictures continuously. Users are usually
concerned about how fast pictures can be taken in continuous mode. The time frame be-
tween two successive shots may be too short to finish the image processing or compression
for a picture. In practice, the image capture task will immediately switch back to preview
mode after raw data readout is done. As described in the previous section, the image cap-
ture task sends an enabling message to the IPP task by calling the EnableIPP routine. The
remaining color image processing and real-time streaming jobs are taken over by IPP task
which is a background processing job. Similar to other tasks in the embedded system, the
IPP task is triggered when it receives an enabling message.

As shown in Figure 2.15, the captured raw image data are first queued into buffers and
then the remaining jobs are taken over by the IPP task. While the images are being pro-
cessed, users may press the shutter buttons (S1 and S2) again which will result in the DSP
resource being switched to execute pre-capture AE and AF. The raw data stored in the im-
age data buffers may not be completely processed in time. Two or more images may be
queued into the raw data buffers. Since Joint Photographic Experts Group (JPEG) format
is the most popular image file format adopting macro blocks as a basic data unit, a straight-
forward way for the IPP task is to also use macro blocks which contain 16 x 16 pixels as
a basic unit. The DSP handles raw image data within the image processing pipeline and
writes the compressed bit stream to one of the ping-pong buffers. Once the current bit
stream buffer is full, the DSP interrupts the microprocessor to enable the background stor-
ing task, which controls DMA for streaming data onto the storage card. The DSP continues
to process raw image data if no other actions are enabled while the DMA is streaming data
to the card. This realizes parallelism of color image processing, compression, and real-time
streaming. Note that actions in the background processing task may be interrupted at any
time when receiving the message that the user has pressed the shutter button.

2.5.3.2 MPEG Audio/Video Recording

Video signal processing, compression and real-time streaming would be the most time
consuming jobs in a digital camera. Since the DSP subsystem is always tied up with motion
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Background processing for still images.

estimation and motion stabilization calculation for video compression, it is better to assign
other data processing jobs such as audio signal processing to the EMP. In addition to funda-
mental video signal processing steps, bit rate control also highly affects the final quality of
recorded video. The target bit rate must be a compromise between video quality, bit stream
size, and the streaming speed of the storage card. Hence, the background processing should
continuously monitor the average write speed of the inserted storage card.

Audio data compression is triggered by DMA interrupts and executed in the micropro-
cessor. The analog-to-digital converter (ADC) converts the analog signal sent from the
microphone and stores the digital data into a pair of ping-pong buffers. The DMA activates
an interrupt once one of the buffers is full, and then the EMP takes over the remaining au-
dio data noise filtering and compression processes. On the other hand, access of video data
is triggered by vertical sync signal of CCD. The data are processed in both the live view
engine and the DSP system. Note that typical video data is sent from CCD sensors at 30
frames/s, but not all of the frames are processed due to the limitation of computation capa-
bility. In the meantime, the microprocessor runs AE/AWB adjustment based on the results
sent from DSP and then synchronizes video and audio bit streams to generate MPEG files.

Due to large variations in the bit rates of the video bit stream and the write speed of
different brands/types of storage cards, the task of real-time streaming audio/video data to
storage cards is not as easy as that performed in personal computers, which usually enjoy
much larger buffer memories and faster CPUs. In many cases, even flash cards of the same
brand have different write speeds among cards of different memory size due to the effect
of internal SRAM buffers. In a practical example, the design can incorporate a rate control
algorithm and the described buffering scheme to automatically balance video quality and
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Audio/video bit stream buffers.

write speed of the storage card. As shown in Figure 2.16, the available SDRAM space is
organized as circular and ping-pong buffers for video and audio bit streams, respectively.
Given a default video compression rate, the DSP starts MPEG video compression, and
DMA is enabled for streaming the data to the storage card as data crosses block boundaries.
The ratio of the total number of audio and video frames can be calculated based on the
recorded time stamps and the target bit rate is adjusted dynamically according to the free
space in the buffers.

2.54 Power Aware Design

Portable devices rely on batteries to provide power and thus power consumption is an im-
portant issue in achieving long battery life. Besides selecting excellent battery technology
and components with low power consumption, there is a lot that can be done with embedded
software to achieve optimal performance. The events with the highest power consumption
are as follows; changing zoom step, running auto-focus, enabling the mechanical shutter
driver, switching aperture size, and charging the strobe capacitor. It is easy to ensure that
the aperture and mechanical shutter not be activated together.

In general, there are several features of battery and power circuits that the designers
should keep in mind. First, there is always an effective series resistance of the battery.
When the current drawn from the battery is higher, the voltage drop across the series re-
sistance is higher and the terminal voltage of the battery becomes lower. Lower battery
terminal voltage usually results in lower power circuit efficiency and, for the same output
current, draws even higher current from the battery. Higher voltage drops across the series
resistance not only waste energy but also dissipate more heat. Therefore, it is always a good
strategy to keep the battery current low.

Second, the effective series resistance is not constant and the characteristics of the battery
change drastically close to energy depletion. As the voltage of the battery reduces, there is
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a threshold voltage below which the battery will stop providing power. The software needs
to be able to detect this threshold and stop the device before this point is reached. There are
several things that need to be taken into consideration when developing embedded software
for a digital camera: i) turn off the power to the circuits not in use, ii) monitor the battery
level and adjust the power control accordingly, iii) when possible, gauge and calculate the
remaining energy stored in the battery, and iv) arrange the timing such that circuits with
high power consumption are not activated at the same time.

2.6 Embedded Software Design of Built-in Automatic Camera Calibration

The characteristics of some hardware components such as sensors, lens modules and me-
chanical shutters are usually inconsistent among different camera instances although each
of them may be produced by the same manufacturers of the same component. The speci-
fications of these components show that they can only be guaranteed within an acceptable
range. Unfortunately, the final picture quality highly depends on several characteristics of
the image sensors. Namely, the variations of sensitivity for different channels, the sensor
saturation voltage in preview and capture modes, the effective aperture ratio for different
F-numbers of the lens, the percentage of lens falloff as well as the best active window
aligned with the sensor, the photo response non-uniformity among the different pixels of
the same sensor, bad pixel identification, and the extra DC voltage generated by the sensor
dark current and circuit offset. It is difficult to produce good images if one of the above
items is not calibrated accurately or otherwise compensated for.

The design of a camera model can only be done based on a set of component param-
eters and variations in the hardware components must be calibrated. The best way is to
incorporate an automatic calibration function into the developed software platform. Each
camera can be calibrated in the production line without connecting to any computers, or
where computers are required only at the start of production line for initializing calibration
process. The number of computer based test fixtures needed is drastically reduced. In many
cases the same test environment can accommodate several cameras and perform calibration
simultaneously. If calibration data need to be collected for statistical analysis, they can
either be stored on the camera or on a memory card. It is always possible to upload these
data at a final quality control station. This system increases the throughput dramatically
and reduces the mistakes made in the production line. The following sections first describe
the system flow and then discuss detailed calibration methods for the two major calibration
items.

2.6.1 Automatic Camera Calibration Flow

Figure 2.17 shows the calibration flow of the proposed system. Since the program is
embedded in the camera, it can run these five steps automatically. The only equipment
needed for these calibration items is a standard light box that provides stable and uniform
light. The intensity and color temperature of the light box needs to be measured and cal-
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The calibration flow of the proposed system. (©) 2005 IEEE

ibrated periodically. The design methodology of this camera calibration flow is based on
the following observations:

e The captured raw data contains DC components caused by sensor dark current and
other offset voltages inherent in analog circuits. These components must be removed
before the data can be used for other calibration processes. Even though many com-
mercially available analog front end processors can already provide very good per-
formance in reducing the effect of optical black level, it is still good practice to verify
the result and hence this step is performed first.

e Minimum automatic gain control (AGC) setting determines the linear region of the
optoelectronic conversion function (OECF) of the sensor response for preview and
capture modes. This is needed for the sensor to provide highest dynamic range for
image capture. However, to make sure the still image capture operation works cor-
rectly, it is necessary to calibrate the mechanical shutter delay before performing
minimum AGC setting calibration.

e Mechanical shutter delay calibration must be executed for all aperture sizes, since
the associated mechanical shutter delays are different. Hence the captured raw data
can also be used for aperture ratio calculation.

e The sensor white balance calibration must rely on accurate AGC settings to prevent
the sensor from operating in the nonlinear region. Thus, the calibration of the mini-
mum AGC setting should be performed before calibrating the sensor white balance.
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e Active window adjustment can be combined with sensor white balance calibration
because the optimal exposure time and gain setting have been determined in this
stage.

e The bad pixel identification stage is carried out as the last step because its exposure
condition must be well-controlled.

For the black level, sensor white balance, active window, and bad pixel calibrations, it is
only necessary to take one or two raw images for simple statistical analysis. This section
only discusses the mechanical shutter delay and minimum AGC setting calibrations.

2.6.2 Mechanical Shutter Delay Calibration

A typical timing diagram of a CCD based digital still camera is shown in Figure 2.18. As
long as the pixels are exposed to the incident light, the image charge will be accumulated
and the amount of charge is proportional to the exposure time. The electronic shutter is
composed of a sequence of reset pulses (RP), which will clear the image charge accumu-
lated on the sensor elements called photosites. With consecutive RPs, the image charge
stored on the photosites will be cleared until the last RP finishes. The time duration be-
tween the last RP to the time instant that the final image charge is transferred to the vertical
CCDs is the so-called effective electronic shutter time.

In high resolution commercial digital still cameras, the vertical CCDs are not able to
transfer the entire array of image charges at one time. Consequently, the image array is
usually split into two or more fields and the entire image data is read out field by field.
When the first field is being read out, the remaining fields are still exposed to the incident
light if it is not blocked and this will result in uneven exposure. A popular solution is to
use a mechanical shutter to block the incident light completely. The result is a combination
of an electronic shutter to control the start of the exposure and a mechanical shutter for the
end of the exposure.

VD 1 |
RS O I I T -
— T.L:f,ws—‘
MS
MS CTL

< Ty ys >re Ty s ——

FIGURE 2.18

Typical CCD exposure timing. The term 7p s denotes mechanical shutter delay time, Ty s stands for
mechanical shutter control signal wait time, Tg is electronic shutter exposure time, 7g_jss denotes mechanical
shutter exposure time, and 7y p denotes VD cycle time. (©) 2005 IEEE
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Shutter closure and delay time. (©) 2005 IEEE

A typical mechanical shutter (MS) is driven by a solenoid whose speed is finite as shown
in Figure 2.19. This is because the solenoid needs to accumulate enough energy to over-
come static friction and move the shutter blades. In addition, the delay time and shutter
closure time also vary from component to component. In real applications, if we plot the
effective opening area of the mechanical shutter as a function of time, the shutter closure
curve can be approximated by a slanted line Lcy. The time from 90% to 10% of the full
opening of the mechanical shutter is usually called the closure time 7¢z. By assuming that
area A is approximately equal to area B, the closure of the MS can be replaced with an
equivalent perfect shutter at the instant of 50% of full opening, which is represented by the
vertical line Lp. The effective exposure time contains two parts, one is the time Tgg that
the mechanical shutter remains completely open, and the other is roughly 7¢; /2. In normal
applications, the reset pulses should not enter the shutter closure period.

Referring to Figure 2.18, the mechanical shutter is calibrated as follows. The period
between the VD pulses 7y p is known, and is usually designed to be close to 1/30 second.
Define electronic shutter time Tgg as the time between the falling edge of the last RP and
the start of the next VD pulse. This electronic shutter time can be set in software. We can
set a mechanical shutter control signal wait time Ty _ss and try to measure the mechanical
shutter delay time Tp js. The effective shutter time composed of electronic shutter and
mechanical shutter time is designated as Tg_jss. The relation between the above variables
is shown in the following equation:

Tvp — Tee + T ms = Tw ms +Tp_us (2.2)

The calibration procedure is to try different values of electronic shutter time T¢g to find
the point where the effective shutter time 7r s becomes zero. When this happens, the
CCD output voltage will become zero. Under such conditions, we can obtain the following
equation by substituting Tg_pss with zero and Tgg = T,,;:

Typ — Tee; = Tw_ms + Tp_ms (2.3)
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Shutter characteristic. (©) 2005 IEEE

From Equation 2.3, the mechanical shutter delay time Tp_y;s can be calculated. It is then
possible to adjust the value of Ty _yss in order to make the instant that the mechanical shutter
actually closes fixed relative to the leading edge of VD.

The difficulty in finding the closing point ZP in Figure 2.20 is that the output level (Gay)
of the CCD is very low. The data tends to be corrupted by noise when the effective shut-
ter time is extremely short. In addition, when the electronic shutter time is close to the
mechanical shutter closure time, the effective exposure will be affected by the mechanical
shutter tolerance. Therefore, we can only rely on the region where the effective exposure
time is long enough such that the CCD output level is relatively high. In real applications
with 10-bit analog-to-digital converter (ADC) output, the starting point of the electronic
shutter time 7T,.; is adjusted such that the output level G4y is approximately 800. When
the data is plotted, it is possible to adopt minimum mean square error method to find linear
approximation to the data points. The approximated line is represented as L, and it is ex-
tended so that it intersects with the horizontal axis at the crossing point ZP. The equation
of line L; has the following form:

Gaw = -Tee+ P (2.4)

whereas the location (7,,) of the point ZP can be obtained as follows:

__B
Toer =—2 2.5)

where o and 3 are the slope and the offset value of the line L, respectively.

2.6.3 Image Sensor Calibration

The OECF curve of typical CCD output usually contains linear, nonlinear and saturation
regions, as shown in Figure 2.21a. Only the linear region is suitable for image processing
[40]. The pixels operating outside the linear region are very difficult, if not impossible, to
handle using typical image processing pipelines. The main difficulty is that this nonlinearity
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(a) Optoelectronic conversion function of CCD sensors. (b) Minimum AGC setting calibration. (©) 2005 IEEE

is usually not consistent among different sensors, thus it is difficult to characterize and
utilize this nonlinearity. In order to provide better sensitivity and wider dynamic range,
it is necessary to operate CCD sensor with the maximum range of its linear region. This
requirement can be achieved by finding the AGC setting so that the upper edge of the
linear range matches the maximum input voltage Vg of the ADC. The corresponding AGC
parameter is called the minimum AGC setting Aps;v. Under normal lighting environments,
the AGC is always set at Ay, but higher AGC settings will be used to increase the effective
sensitivity in darker environments. This setting can guide the auto exposure control to
prevent the sensor from operating in the nonlinear region.

The proposed calibration process relies on the ADC result for analysis. A typical example
of adopting 12-bit ADC is shown in Figure 2.21b. First, a relatively low AGC gain value
of Ay is set such that the ADC output value of the saturation region is much lower than
the full scale output of the ADC, which is 4095 in this case. Then a few raw images are
taken with different shutter times and the center green pixels are averaged to check for the
output level of the CCD. The associated OECF curve is represented by Cp. From these
data points, a linear approximation line L3 can be derived. In the next step, the shutter time
is increased further while the average data of the captured raw image is compared with
the data calculated from the linear approximation. At time 7y it is found that the actual
data Dp at point P is lower than the estimated data D; by about 3%, this can be judged as
the end of the linear region of the OECF. It is straightforward that additional gain needed
to bring point P to point Q is A; = 4095/Dp. With the overall AGC gain value set as
Apin = Ag X Ay, the resulting OECF curve is C;.

2.7 Conclusion

A design of versatile digital cameras, which supports both attractive features in user op-
eration mode and calibration/testing functions in engineering mode, is a complex process.
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Robust embedded software platforms can make the development of digital cameras fast
and shorten the design cycle time. This chapter described a camera software platform that
has been successfully used in developing several consumer cameras. Both major hardware
components and operation modes supported by this platform allow for easy understanding
of the camera hardware architecture and practical camera design. In addition, the proposed
embedded self-calibration flow and sensor/shutter calibration algorithms give a valuable
reference for efficient construction of consumer cameras in mass production lines.
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3.1 Introduction

The transformation of digital camera raw sensor image data into a full-color fully pro-
cessed image involves a complex chain of computations. The possible orderings of indi-
vidual operations and associated implementation details that constitute the image process-
ing chain can lead to a sea of permutations. However, despite this seemingly immense
number of available degrees of freedom, the problem of image processing chain design is
overconstrained. Image quality must be maximized while compute resource use must be
minimized. It is the minimization of required computational effort that, in fact, severely
restricts the number of degrees of freedom in the image processing chain design problem.
Consequently, image processing operations that are highly effective may not be viable can-
didates for image processing chain for constrained compute environments. In the end, the
process of designing an image processing chain becomes one of taking relatively simple,
well-known image processing operations and staging them in a manner that produces the
best synergistic effects.

This chapter begins with Section 3.2, which presents in detail a basic image processing
chain that will be used as a reference for the balance of the chapter. After a discussion of
cost and user sensitivity considerations (Section 3.2.1), the reference path is artificially seg-
mented into four main stages: correcting image errors resulting from the flaws of the sensor
hardware (Section 3.2.2), correcting image errors caused by the image capture conditions
(Section 3.2.3), creating a standardized processed image (Section 3.2.4), and rendering an
output device-specific fully processing image (Section 3.2.5). Each section is further subdi-
vided into component operations such as dark floor subtraction, structured noise reduction,
stochastic noise reduction, exposure and white balance correction, color filter array inter-
polation (demosaicking), stochastic color noise reduction, color correction, tone scale and
gamma correction, and edge enhancement.

With the reference path fully presented, a number of variations are discussed in detail
in Section 3.3. Section 3.3.1 presents the idea of splitting the chain in part along the lines
of independent and interdependent luminance-chrominance image processing paths. Sec-
tion 3.3.2 follows up with a similar discussion on the merits of splitting the chain along the
lines of spatial frequency content. The nature of the computing environment and its impact
on the image processing chain design process are discussed in detail in Section 3.3.3. In
addition to the topics of internal image data management and manipulation, the section
addresses the implementation details for a variety of physical computing environments.
Section 3.3.4 is focused on resizing and compression which are two key image processing
operations not included in the initial reference path. Finally, other important facts, such as
data bit depth resolution, the use of nonlinear photometric spaces, and the issues around
extended dynamic range processing, are presented in Section 3.3.5.

The bulk of this chapter is concerned with the problem of processing digital still images.
Digital video imaging has been an equally important application. Section 3.4 discusses the
significant changes that must be made to the image processing chain in response to this very
different imaging environment. Finally, Section 3.5 summarizes the main image processing
chain design ideas.
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FIGURE 3.1

Reference image processing chain.

3.2 A First Image Processing Path and the Basic Building Blocks

As will be seen, the point of image processing chain design is that there are a number of
plausible orderings and configurations. Indeed, each image processing chain designer will
have its own preferred and valid chain configurations with supporting justifications. In this
regard, any reference to a “standard” image processing path must be taken with a certain
grain of salt. Still, it is a useful talking point. To this end, Figure 3.1 presents what will be
the reference image processing chain for subsequent discussion. Example images achieved
at different stages of the chain are presented in Chapter 1.

3.2.1 Cost and User Sensitivity Considerations

In a system as complex as an image processing chain, there will be a number of engineer-
ing decisions that must be made. Many of these decisions will have no objective basis for
determining what is “right”; however, many decisions will depend on what is preferred or
expected. Consider the camera used for photographing a wedding versus the other camera
used to take holiday snapshots at the beach. The user expectations (UE) concerning the
resulting image quality would be very different. This point will be raised numerous times
in the following discussions. The image chain designer must make technical decisions that
ultimately will be judged according to the UE of the target customer base.
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3.2.2 Systematic Sensor Data Correction

Figure 3.1 begins with the raw color filter array (CFA) image data produced by the sensor.
This data will typically be in a nominally linear photometric space. As a result, the pixel
values will be directly proportional to scene reflectance in the scene space. The capture
bit depth of the pixel values will typically be anywhere from 8 bits to 16 bits, with 8- and
10-bit systems; that is, those that capture 256 and 1024 code values per pixel, respectively,
being the most common. With planning (and perhaps some luck), the desired portion of
the dynamic range of the scene will fall in the range of valid code values without being
significantly clipped.

3.2.2.1 Dark Floor Subtraction

A tacit assumption often made is that a pixel receiving no light will produce a code
value of zero. Unfortunately, thermal noise and other nonphoton-generated noise sources
will produce nonzero pixel values. As a result, the first course of action is to subtract a
dark floor from the original CFA image. This can be as simple as applying a fixed value
equally to every pixel in the image. Alternately, a spatially dependent set of values can be
subtracted. While the nominal goal is to remove unwanted biases in the pixel data, some
residual bias may be left in order to avoid data clipping and other quantization errors in the
shadow regions.

Certainly, subtracting a single fixed value from the image is the quickest and easiest
operation to implement. For a low UE situation, this will almost be an automatic decision
by the image chain designer. The only subtleties in this case are deciding how much of
the dark floor to subtract and then changing the dark floor as a function of camera exposure
index (ISO), shutter time, and temperature. As to the first question, a quick characterization
of the image noise near the photometric zero point of the image will provide a mean and
standard deviation. Photon noise will exhibit a Poisson distribution, but because other noise
sources may be present, a Poisson distribution is not guaranteed. Without doubt, the mean
does not want to be clipped from the image data. A safe initial setting might be to subtract
a value equal to the mean reduced by one or two standard deviations. These statistics can
be empirically determined with either a “lens cap” shot or the capture of a good-quality
matte black test card. Alternately, if the sensor has shield pixels around its perimeter,
these values can be interrogated at the time of capture. This last approach has the added
benefit of characterizing the dark floor at the actual circumstances of the camera at the time
of capture; for example, using the information about temperature, ISO, and shutter time.
Barring the convenience of shielded pixels in the sensor, a calibration of the camera in the
factory will need to be performed to determine nominal values for dark floor subtraction
for, at least, the ISO settings the camera supports.

3.2.2.2 Structured Noise Reduction

Unfortunately, at this point we must abandon the notion that the sensor is perfect. The
assumption that the dark floor is constant across the entire image capture is a simplification
that is valid only if the UE is suitably lax enough. There are many potential causes for why
the dark floor may not be uniform across the extent of the sensor. Apart from physical flaws
or nonuniformities in the sensor itself, the proximity to heat-producing components in the
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camera body may cause one part of the sensor to be warmer than another part. Entering
into the world of spatially dependent dark floor correction, the task is now to subtract a dark
floor mask from the captured image. This mask is created either in the factory or during a
dark field shot (i.e., closed shutter) that may be automatically captured during power up of
the camera. As discussed above, this mask can be suitably scaled prior to subtraction. One
liability of this dark floor mask subtraction operation is that while the structured noise in
the image will be reduced, the stochastic noise in the image will be increased because of
the root mean square adding of variances of the two random variables: the stochastic noise
in the captured image and the stochastic noise in the dark floor map. A natural solution to
address this increase in stochastic noise is to consider capturing several dark floor masks
and subtracting their average from the captured image. Another solution is to fit the dark
floor mask with a low-frequency polynomial model and subtract the resulting polynomial
from the captured image. This route has the additional advantage that if the map is to be
stored in the camera then only the coefficients of the polynomial map need to be recorded
rather than data for a full image.

Somewhat implied by the previous discussion is the fact that dark floor subtraction tends
to address low-frequency structured noise better than high-frequency structured noise. A
significant type of high-frequency structured noise is the defective pixel. It is almost in-
evitable that a number of the individual pixels in any given sensor will be defective. In fact,
whole columns and rows of pixels might be nonfunctional. Even if the sensor is handpicked
in the factory to be free of defective pixels, over time cosmic radiation will eventually cre-
ate defective pixels in the device. One can consider defective pixels falling into two broad
categories. First, there are the pixels that are completely and consistently nonfunctional,
being “stuck” at complete black or complete white regardless of what light may fall upon
them. This is the simpler of the two categories to address. The second category is more
problematic because these pixels are only partially defective. They may still respond to
light, but with a significantly different gain factor from the majority pixel population of the
sensor. They may also only be defective for certain camera settings (e.g., ISO) but function
normally for others. When considering this second class of defective pixels, even the deter-
mination of how different a pixel must be from the main population before it is considered
defective can be problematic. Defective pixels of the first category can be easily mapped
out in the factory and their locations stored in the camera firmware. Defective pixels of
the second category or those of the first category that are formed after the camera has left
the factory are more difficult to address. Pixels that fail to white can be detected using
closed shutter captures and subsequent impulse or outlier detection algorithms. Pixels that
fail to black are more problematic. Ultimately, one may be forced to treat all unidentified
defective pixels with stochastic noise cleaning methods [1], [2], [3].

Some defective pixels can be masked, at least partially, by the dark floor mask subtrac-
tion. However, the main method of defective pixel masking is to replace defective pixel
values with the average values from known working neighboring pixels. The strategy can
be as simple as performing a boxcar average of like-colored pixels over a given region or
as complex as performing edge detection and selecting an appropriate directional blur ker-
nel on a pixel-by-pixel basis [4], [5]. Isolated defective pixels are easily dealt with using
the simplest of methods. Clusters and whole rows and columns of defective pixels need
solutions that are more involved in order to prevent visible artifacts in the final image.
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A final class of structured noise to be discussed deals with variations in the thickness of
the CFA color filters across the surface of the sensor. These are usually a consequence of
(unwanted) interactions of the manufacturing process with the morphology of the silicon
wafer. As a result, an image of a featureless neutral field may exhibit low-frequency vari-
ations in color. Because this is a stable phenomenon, it can be mapped in the factory and
stored in the camera firmware. Either a full-resolution mask can be created or the coeffi-
cients of a polynomial fit can be determined. The method of correction is similar to dark
floor subtraction, except that each color channel in the CFA will have its own separate mask
or polynomial.

3.2.3 CFA Data Correction

The next stage of the image processing chain is concerned with the reduction of stochas-
tic noise and corrections for exposure and white balance errors at the time of capture. Re-
ferring to Figure 3.1, the ordering of these two operations is arbitrary and can be inverted
without penalty. Unless there are highly unusual interactions present in the individual
image processing implementations, these two operations can be considered independent.
This is largely because stochastic noise reduction will be mainly concerned with the high-
frequency spatial component of the image data while the exposure and white balance cor-
rection will be focused on using the low-frequency spatial component to the image. This
notion of high-frequency / low-frequency split processing will be revisited below.

3.2.3.1 Stochastic Noise Reduction

It is well known that if a system consists of a number of operations that are signal ampli-
fiers, then it is best to reduce noise contributions as early as possible in the chain. As will
be discussed later, many of the image processing operations in Figure 3.1, notably color
correction, tone scale and gamma correction, and edge enhancement, are signal amplifiers.
This would argue for performing noise reduction prior to these operations. Moving further
back along the chain, the nature of the CFA interpolation operation needs to be consid-
ered. This operation may or may not be a signal amplifier, depending on the composition
of the missing pixel value estimators. In addition, this operation may be linear or it may
be adaptive (nonlinear). In the latter case, the robustness of the algorithm’s decisions can
be significantly influenced by the presence of noise in the CFA image data. Therefore, it
seems prudent to perform noise cleaning before CFA interpolation. Finally, we have al-
ready noted that there is no strong reason to prefer performing noise reduction before or
after exposure and white balance correction.

Performing noise reduction before CFA interpolation presents its own unique set of chal-
lenges. Because there is only one color channel value at each pixel location, it becomes
difficult to exploit the partial correlation between the color channels in the image. For this
reason, Figure 3.1 has a separate stochastic color noise reduction block after CFA interpo-
lation. Consequently, noise reduction before CFA interpolation generally employs the tech-
niques of single-channel grayscale image processing. Conceptually, the CFA image data
is split into three or more color channel components by collecting pixels of like color into
each component. At this point, each component can be treated as an individual grayscale
image and noise-cleaned in any appropriate manner. After noise reduction, the color chan-
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A 2 x 2 block of pixels in a Bayer mosaic image forms a single full-color superpixel.

nel components can be merged back into a (now noise-cleaned) CFA image. In practice, the
CFA image is apt to be left intact rather than being formally split and merged. Instead, the
pixel strides of the noise reduction operations will be adjusted to avoid unwanted mixing
of color channels. Typical grayscale noise reduction methods used on CFA data include
low-pass filtering, sigma filtering [6], and median filtering, although potentially any noise
reduction scheme appropriate to grayscale imaging could be successfully used. The effect
of noise filtering on camera images is illustrated in Chapter 1 while joint denoising and
demosaicking solutions are discussed in Chapter 9.

There is a subtle challenge not to concede on addressing color channel correlation at
this point of the image processing chain. While addressing correlation at the full sensor
resolution must wait until after CFA interpolation, lower spatial frequency color correlation
can be conditioned beforehand. Dividing the CFA image into a lower resolution array of
superpixels (Figure 3.2) produces a full-color image than can now be treated with a larger
set of noise reduction techniques. The discussion of these techniques will be postponed
until later in the chain.

3.2.3.2 Exposure and White Balance Correction

Unlike the human visual system (HVS) that constantly and automatically adjusts the
apparent exposure and white point of what we see, digital cameras have no such innate
functionality. Therefore, such adjustments must be made algorithmically after image cap-
ture. The goal of such algorithms is to render neutral areas in the scene as regions of equal
code values for all color channels in the final image. Additionally, midlevel grays (18%
scene reflectance) should also map to mid code value range of the final image. Sometimes
the processes of exposure correction and white balance correction are referred to collec-
tively as scene balance correction. Detailed descriptions of exposure correction and white
balance correction can be found in Chapters 10 to 12.

As with noise reduction, these adjustments can be grouped into two categories. The first
category consists of adjustments in response to user input. In the direct case, although an
unlikely one, the user can specify a particular exposure compensation (e.g., 1.33 stops)
and also specify the type of scene illuminant (e.g., daylight or tungsten). With this explicit
information, the CFA image data can be directly modified in accordance with the user input.
For exposure compensation, all pixel values would be equally modified by the appropriate
scale factor. For white balance correction, there would be a set of three different scale
factors, one for each color channel. This white balance triplet would be characteristic of
the given scene illuminant. In the more likely indirect case, a simpler input mechanism for
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the user would be to click on a region in the image that is known to be neutral in color and
of a middle exposure level. The algorithm can then interrogate that region of the image
to determine the scale factors necessary to drive it, along with the rest of the image, to a
desired code value position.

The second category of exposure and white balance adjustment is far more difficult. User
input is not available. All the algorithm has is the image data itself. This is the realm of au-
tomatic exposure and white balance correction algorithms [7], [8], [9]. This is an ill-posed
and unfair problem! One is asked to find the proper adjustment for a midlevel gray region
that does not exist in the image. Most approaches are based on heuristic statistical models
such as the gray world hypothesis. This hypothesis contends that all images, taken as a
single set of pixels, average to approximately 18% scene reflectance gray (neutral). Unfor-
tunately, this says nearly nothing about the statistics of any given single image. Slightly
more robust statements can be made by restricting the application of the gray world hypoth-
esis to only those parts of the image that lie along the edge and feature boundaries. Thus,
large regions of sky or grass will not dominate the scene average. Using this and other
heuristic rules, a set of code values (usually a triplet) representing 18% gray for a given
image are computed. At this point, the calculation proceeds as before in the first category
of exposure and white balance adjustment.

As an example of additional heuristics that can be applied, consider the problem of cor-
recting an image with a warm (red) cast. This image could be an indoor scene at home
under tungsten, or an outdoor scene in one’s backyard of a sunset. In the first case, the
reddish color should be rendered as neutral (i.e., more or less fully corrected) because that
is how one perceives the scene. In the second case, the reddish cast should be preserved
because sunsets look red. A heuristic that can help distinguish between these two cases is
the overall brightness level that can be found from metadata describing the aperture set-
ting, shutter time, and exposure index setting at the time of capture (a sunset is typically
much brighter than an indoor light bulb) [10]. Chapter 13 describes camera image storage
formats and associated metadata in detail.

Finally, it is noted that the computations just described can be done on spatially very
low-resolution data. It may even be preferred to use low-resolution image data to improve
the performance of the heuristic rules. This has the advantage of making the computations
relatively impervious to noise and detailed scene content and composition. In addition, a
small data set is computationally more tractable, allowing the use of more involved heuristic
systems without undue execution time penalties.

3.24 Adjusted CFA Image and Image Data Calibration

At this point, we have conditioned the CFA image data to be reduced in noise, both
structured and stochastic, and to represent an image that has been properly scene balanced.
Most subsequent image processing operations in the chain tacitly assume these idealized
conditions. It will be the responsibility of the later image processing operations to address
any residual departures from this state.

The next task is to create a full-color image and then convert that image into a known,
calibrated color space. Along the way, the aforementioned residual noise and scene balance
errors will need to be addressed.
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Minimum repeating units: (a) RGB Bayer CFA, (b) CMY Bayer CFA, and (c) hybrid CMYG pattern.

3.24.1 Color Filter Array Interpolation

The basic premise underlying CFA decimation and subsequent interpolation or demo-
saicking is that full-color image data is high in redundant information. Some sense of this,
perhaps, can be gained by noting that spatial detail as perceived by the human visual system
is predominantly based on luminance information in the scene and only to a much smaller
extent on chrominance information (see page 380 in Reference [11]). Beginning with color
television, most electronic imaging systems have taken advantage of this fact by record-
ing chrominance information at a lower spatial frequency than luminance. The savings in
reduced information bandwidth more than compensates for any small loss in image fidelity.

Consequently, most CFAs used for image capture subsample chrominance with respect
to luminance in two ways. First, only one of three (or more) color channels is recorded
at each pixel location. Second, in the color filter array minimum repeating unit (MRU)
there are more filters assigned to sensing luminance information than there are for sensing
chrominance information. The prototypical CFA is the Bayer pattern [12]. In the RGB
case (Figure 3.3a), the green pixels are used to sense luminance information, and the red
and blue pixels are used to sense chrominance information. In the CMY case (Figure 3.3b),
the yellow pixels are used to sense luminance, and the cyan and magenta pixels are used
to sense chrominance. The complexity can be further increased by adding a fourth color
and reading out sums and differences of adjacent pixels to produce luminance-chrominance
information. In the CMYG-based MRU (Figure 3.3c), it is common to read out two lumi-
nance (C + Y, M + G) and two chrominance (C - Y, M - G) values [13], [14].

Regardless of the CFA used, a full-color image must be produced at this point in the
image processing chain. Full-color in this case means each pixel in the image has a color
specification triplet. There are two general approaches to the problem of CFA interpolation.
The first is to use standard linear interpolation methods. The most common approach is
to combine neighboring pixel values of the same color in some straightforward method
to produce an estimate for the missing pixel value. This method can take the form of a
convolution operation and implement such standard practices as pixel replication, bilinear
interpolation, or bicubic interpolation. If, on the other hand, there is some understanding
of the cross color channel correlation of the data, more than one color may be used in
this process. This latter approach is most readily accomplished by first interpolating all
of the luminance pixel data and then forming color differences between the luminance
and chrominance pixel values (e.g., R - G and B - G). These color difference values are
then interpolated and the resulting chrominance values recovered by adding the luminance
values back to the interpolated color difference values [15].
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The second approach to CFA interpolation is to use nonlinear adaptive methods. These
are generally heuristic in composition as they fall out of the realm of linear shift-invariant
systems. With these systems, the segmentation of image data into luminance and chromi-
nance channels becomes more important because the decisions made by the algorithm are
generally keyed off the fine spatial detail in the image. As a result, the luminance channel
is interpolated first by using some form of edge detection of the luminance data to deter-
mine the precise manner of interpolation from pixel to pixel. Sometimes these algorithm
decisions are made immediately and irrevocably [16], [17], and sometimes the decisions
are revisited and revised after their consequences are perceived later in the algorithmic pro-
cess [18], [19]. Once the luminance channel is fully populated, the chrominance channels
are generally treated with the linear approaches previously described, although references
will be found in the literature to adaptive methods used in place of those approaches [17].
Chapters 1 and 5 to 9 discuss demosaicking issues in detail.

The result of the CFA interpolation process will be a “camera” full-color image. The
color space will generally not be a standard, calibrated space. Instead, it will be defined by
the spectral sensitivities of the camera image capture hardware (detector quantum efficien-
cies and CFA spectral responses being the biggest players). Before addressing this issue,
an intermediate operation is discussed.

3.2.4.2 Stochastic Color Noise Reduction

During the stochastic noise reduction applied to CFA image data, the color channels were
treated as separate and independent grayscale channels. In each channel, looking at artifacts
seen in a flat field, stochastic noise gives the impression of “visual static” or “graininess”
in what should be a smooth region of the image. Sufficiently reducing the visibility of the
noise leaves one with the subtle fluctuations of a texture that looks “real” instead of artifi-
cial. Now that all the color channels are fully populated, another facet of stochastic noise
emerges. A texture that might be acceptable in the context of a single-channel image is
deemed not acceptable when matched with similar, but different, textures in the other color
channels. Instead of producing a light-dark texture, residual stochastic noise in an RGB im-
age produces unexpected color variations. This effect is most pronounced in neutral (gray)
regions because the color fluctuations include pastels of widely divergent hue angles. Such
color artifacts are far more visible and objectionable than the corresponding light-dark fluc-
tuations in a single-channel image. The color aspect of stochastic noise reduction is now
addressed.

The good news is that at this point the image data is in a well-known and well-behaved
representation. Methods abound in the literature on how to noise-clean fully populated
color images. The simplest approach may be to, again, treat each color channel as an inde-
pendent grayscale image and then clean these components separately. However, this may
not be overly effective and tends to miss the whole point. It is far better to transform the
image into a luminance-chrominance representation (assuming it is not already so). At
this point, the luminance and chrominance channels can be noise-cleaned in any appropri-
ate manner. Generally, the luminance data will require a significantly different cleaning
modality from that used for the chrominance data. If the same method is used, at least the
tunings of the operation will be quite different.
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Because this is a color noise reduction operation, the luminance channel may be left com-
pletely untouched. It is still useful as a reference for use with adaptive chrominance channel
noise-cleaning operations. The chrominance channels, if sufficiently devoid of spatial edge
detail, can be cleaned most simply by a low-pass (blurring) convolution operation. If the
presence of low-frequency color blobs is evident, then rather than use a large convolution
kernel, the chrominance channels can be decomposed into a Gaussian or wavelet pyra-
mid. The individual pyramid components can then be convolved with smaller kernels and
a noise-cleaned image reconstructed from the processed components. If there is a desire to
preserve the residual edge detail in the chrominance channels, then adaptive noise-cleaning
methods such as sigma filters or steerable median filters can be used. When using such
adaptive methods, the luminance channel can often be used in the edge detection opera-
tions, providing improved robustness over the lower modulation edges in the chrominance
channels.

If there is a reason, the luminance channel can also be noise-cleaned at this time using
any method applicable to single channel grayscale images.

3.2.4.3 Color Correction

It is now time to prepare the image for its final rendered form. This requires transforming
the image into a standard calibrated color space. There are a number of possible destination
color spaces. Of these, the industry has standardized on sRGB [20], which is designed for
video, or soft display, devices. However, because SRGB is itself a color transform from
CIE 1931 XYZ space, the latter can be considered the first target of the color correction
operation.

CIE 1931 XYZ space (see pages 101 to 110 in Reference [11]) is a color space defined
by standardized X (1), y(A), and Z(A) color matching functions. CIE 1931 XYZ space
itself is a color transform from the previously defined CIE RGB color space, although there
is generally no reason to explicitly invoke that relationship in today’s digital cameras. The
first part of the color correction process is to transform the image data from camera color
space into CIE 1931 XYZ space. Assuming an RGB camera color space, the operation
becomes a 3 x 3 matrix multiply:

X ai apz a3 Reamera
Y | = | a2 ax ax Geamera 3.1
Z as) asp ass B amera

The coefficients of the transformation matrix are computed in the factory through a regres-
sion process using measured camera RGB tristimulus values of color patches with known
XYZ tristimulus values.

Once the XYZ tristimulus values have been computed, they can be transformed to SRGB
tristimulus values with a standard matrix as follows:

RRGB 3.2410 —1.5374 —0.49867 [X
Gwap | = | —0.9692  1.8760 0.0416 | | Y (3.2)
B 0.0556 —0.2040 1.0570| | Z

Combining Equations 3.1 and 3.2 produces the color correction matrix as would be imple-
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mented in the image processing chain as follows:

RSRGB [ 3.2410 —1.5374 —0.4986 ail aip ais Rcamera
GsrgB | = | —0.9692 1.8760 0.0416 ap| ax a; Geamera
BsRGB L 0.0556 —0.2040 1.0570 asy azp ass Bcamera
_bll b12 b13 Rcamera
= | by1 by b3 Geamera (3-3)
_b31 b32 b33 Bcamera

It should be noted that up to this point it has been tacitly assumed that all computations
that have been performed in the image processing chain have been done in linear space.
While the use of nonlinear spaces for these computations will be discussed below, the color
correction computations just presented are explicitly designed for linear space data. The
case of performing color correction on nonlinear space data will also be addressed below.

3.2.5 Image Space Rendering

The remaining steps in the image processing chain are targeted at producing the best
image for a given image rendering. In keeping with current industry standards, this means
preparing the image for display on a video device. The transformation to SRGB tristimulus
values has already begun this process. The process is completed by transforming the image
into a nonlinear space suited for video display devices and applying edge enhancement
(i.e., sharpening).

3.2.5.1 Tone Scale and Gamma Correction

The human visual system’s ability to adapt to a wide range of scene luminances is another
essential capability that the digital camera must duplicate, if only in a primitive manner. In
this case, the overall contrast of the scene must be adjusted so that the image as viewed
on the soft display device looks similar to the original scene viewed under illumination
that was typically a hundred times as bright, if not more. Added to this, the image data
must be transformed to account for the nonlinearity of the video display. As in the case of
color correction, the tone scale and gamma correction operation is implemented as a single
transform composed of these two components.

The tone scaling operation adjusts the contrast of the image. It is usually implemented as
a fixed lookup table that is applied equally to the red, green, and blue channels. It assumes
the input data is in a linear space that has been properly exposure corrected. There are
two general classes of tone scale transforms. The first class consists of fixed transforms
that are installed in the factory and used on all images. There may be a single transform
or a small family of fixed transforms, with each family member assigned to a different
exposure compensation step, such as +2, +1, and 0 stops. The shape of the fixed transform
curve is typically “S” shaped (Figure 3.4a) with a slope greater than unity in the middle
of the input code value range and considerably less than one at the two extremes; that is,
the shadows and the highlights [11]. The visual impact of applying such a curve is to
increase the overall contrast of the image. Note that there is no reason that the tone scale
need be symmetric in its handling of the shadows and the highlights. In order to reduce
the visibility of noise in dark regions of the image, a tone scale may apply more aggressive
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compression of shadows than highlights (Figure 3.4b). The tone scale is initially generated
by the image processing chain designer based on the characteristics of the digital camera
system and customer preference; for instance, professional photographers tend to prefer a
lower contrast than do consumer snap shooters.

The second class consists of tone scale transforms that are generated dynamically on an
image-by-image basis. Returning to the HVS, its dynamic range is significantly greater
than any current digital camera. On a sunny day, a person can look into a blue sky and see
puffy clouds, then immediately look into deep shadows and see well-defined image detail.
However, a digital camera with a fixed tone scale will be forced to either saturate the sky
to pure white to render details in the shadows or clip the shadows to complete black to
preserve the sky. A partial solution to this dilemma is to create a custom tone scale that
renders both the shadows and the sky (highlights) at the expense of the midtones, which are
visually less important in such high dynamic range scenes. Figure 3.4c shows an example
of such a tone scale.

There are many ways of algorithmically producing such a tone scale based on histogram
analysis of the image [21], [22]. Regardless of how the tone scale is generated, it ultimately
becomes a simple point transform of the image data:

Rizgs = T (RsrGB)
ke = I (GsraB) (3.4)
B;RGB =T (BsRGB)

The second transformation to be applied is video gamma correction. This standard trans-
form is also defined in the SRGB specification [20] and accounts for the fundamental pho-
tometric nonlinearity of the cathode ray tube (CRT) display. This transform is essentially a
simple power relationship:

, 12.92X 5 5 for X/pgp < 0.00304

Xl = 3.5
SRGB {1.055)(;%3'4) —0.055 for X/ggp > 0.00304 G-)

where Xzgp i Rsrop, GsrGa, Or Bsrgp normalized to [0,1]. The output is also in the
range [0, 1] and can be subsequently scaled to any conventional data range, usually [0,255].
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Equation 3.5 is a point transform and can be concatenated with the tone scale correction to
produce a final single point transform to perform both operations simultaneously:

ks =V (Xira) =V (T (XiraB)) = G (XsrGB) (3.6)

In this expression, V (-) is the video gamma correction, 7'() is the tone scale correction, and
G(+) is the composition correction, usually referred to casually as the gamma correction.

The systematic construction of the composite gamma correction as described here is
frequently shortcut in favor of simply beginning with the sSRGB video correction (Equa-
tion 3.5) and then customizing this transform until the average image has the desired con-
trast, dynamic range rendering, and shadow noise suppression. Such an approach is gener-
ally heuristic in nature and usually targeted at generating a fixed tone scale transform to be
used for all images.

3.2.5.2 Edge Enhancement

The final block in the “standard” image processing chain is edge enhancement, more
casually referred to as sharpening. The essential purpose of this operation is to amplify the
high-frequency spatial components of an image to make it look sharper. Because noise has
also high-frequency characteristics, attention must be given to the question of controlling
noise amplification during edge enhancement.

The two main approaches to edge enhancement are direct convolution and unsharp mask-
ing. Actually, these operations are two sides of the same coin, as they produce mathemat-
ically equivalent results when confined to the world of linear shift-invariant systems. The
direct convolution method consists of extracting a high-frequency record from the image
via convolution with a high-pass kernel. Some scaled amount of this high-frequency record
is then added back to the original image to produce the sharpened result as follows:

A’ =A+k(Axh) (3.7)

where A is the original image, h is the high-pass convolution kernel, k is a scale factor, and
A is the resulting sharpened image. In the case of unsharp masking, the high-frequency
record is created by computing the difference between the image and a blurred (low-pass)
version of itself:

A'=A+k(A—Axb) (3.8)

where A is the original image, b is the low-pass convolution kernel, k is a scale factor, and
A’ is the resulting sharpened image. From Equations 3.7 and 3.8 it can be seen that h and
b are related by h = I —b where I is the identity matrix. In either approach, adjusting the
scalar k£ will adjust the amount of sharpening applied to the image.

In order to control noise amplification during the edge enhancement process, the high-
frequency record needs to be noise-cleaned in some manner prior to being added back to
the original image. The initial impulse (no pun intended) may be to use a standard noise-
cleaning operation. However, high-frequency image data is zero mean and largely devoid of
low-frequency information, so low-pass filtering begins to lose its meaning. Instead, rather
than performing a spatial noise-cleaning operation, an amplitude noise cleaning method is
usually employed. A coring function is used to noise-clean the high-frequency record in
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this manner [23], [24]. This function is a point operation that, like the previously described
tone scale correction, is usually implemented as a lookup table. Modifying Equations 3.7
and 3.8, the coring operation, C(-), can be added:

A’ =A+kC(Axh) (3.9)
A=A +kC(A—Axb) (3.10)

Note that if h =1 —b, Equations 3.9 and 3.10 are still mathematically equivalent.

The shape of the coring function (Figure 3.5) is heuristically determined based on the
fundamental noise characteristics of the digital camera system. Nominally, small amplitude
values in the high-frequency record are suppressed to zero to reduce amplifying noise in
flat regions of the image. Midrange amplitude values in the high-frequency record are left
essentially unaltered. There is no clear consensus on how to modify large amplitude values
in the high-frequency record. An entire range of possibilities can be found in practice: leave
them unchanged, clip them to some maximum value, or beyond a certain input amplitude
value begin to reduce the size of the cored amplitude so that the largest amplitude values
in the high-frequency record are actually set to zero. The selection criteria for the shape of
the coring function is a tradeoff between noise amplification, overall image sharpness, and
image distortions such as the loss of three-dimensionality of strong edges.

Once the mechanisms of edge enhancement have been determined, attention can be
turned to determining precisely which components of the image will be sharpened. As
stated before, most of the fine spatial detail in the image is contained in the luminance
component. Therefore, it is plausible to split the image into luminance and chrominance
components, sharpen just the luminance channel, and then merge the components back into
a sharpened image. If luminance-chrominance space is the final destination of the image,
for instance, in preparation for Joint Photographic Experts Group (JPEG) compression,
then this strategy is practical, as well. However, if SRGB is the final destination space, a
simpler route is available.

The luminance channel, for the purposes of edge enhancement, can be adequately ap-
proximated by the green channel [23], [24]. Thus, a scaled, noise-cleaned (cored) high-
frequency record is produced directly from the green channel and then added equally to
the original red, green, and blue color channels of the image (Figure 3.6). The additional
benefit of this approach is that the green channel of a digital camera system tends to be the
least noisy of the color channels.
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RGB edge enhancement.

3.3 Variations on the First Image Processing Path

It has been suggested a number of times that there are alternate and possibly better ways
of configuring the reference image processing path. Many competing pressures will gener-
ally drive the ultimate configuration for a given application. One of the leading determiners
is the available computing environment. From a simplistic perspective, this can be consid-
ered to be how many pixels can be processed per unit time and what the overall allowable
execution time boundaries are. Complicating this interpretation is the question of shar-
ing compute resources with other nonimaging tasks that the device, for instance, a mobile
phone, may perform. In addition, an individual microprocessor may have idiosyncrasies
that cause some simpler types of operations to execute slowly while other more complex
types of operations execute quickly. As a result, the reference path just presented may have
to be significantly modified. Section 3.4 will discuss this in some depth.

Sometimes image quality requirements, as established by the UE, require better results
than can be easily achieved by simply improving the individual components of the im-
age processing chain. The current trend towards producing acceptable images at higher
and higher exposure indices (ISO ratings) is one example. As a first approach, additional
noise cleaning operations may be added to the image processing chain, for instance, after
the color correction or edge enhancement steps. As suggested under edge enhancement,
described above, a similar noise reduction can be achieved not by formally adding more
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Luminance-chrominance stochastic noise reduction.

computations but by modifying the chain so that certain image components are processed
differently in order to prevent unwanted noise amplification.

3.3.1 Luminance-Chrominance Processing

Under stochastic color noise reduction, the concept of transforming a primary color space
(e.g., RGB) into a luminance-chrominance space (YCC) provided an opportunity for im-
proved image processing results [23]. Figure 3.7 illustrates the concept.

The noisy RGB image is initially converted to YCC space. The luminance and chromi-
nance components are now reduced in noise using methods appropriate to the type of data.
Namely, luminance noise-cleaning must preserve edges and fine spatial detail, whereas
chrominance noise-cleaning generally does not need to be burdened with such concerns.
Figure 3.7 shows that luminance information may be used to assist the chrominance noise-
cleaning process. After noise reduction, the noise-cleaned YCC components are recom-
bined and converted back into RGB space.

The concept of YCC image processing can be extended over larger parts of the image pro-
cessing chain. One classic example, as already discussed, is with edge enhancement [24].
In Figure 3.6, a side branch has been added to the image processing chain. After CFA inter-
polation, a copy of the luminance channel (which could be just the green channel) is routed
around the stochastic color noise reduction and the color correction operations. Instead,
it is fed directly into the tone scale and gamma correction operation and then the edge
enhancement block. This results in a less noisy edge enhancement boost record, having
avoided the noise amplification inherent in the color correction step.

3.3.2 Spatial Frequency Processing

Just as difference color channel components (e.g., luminance and chrominance) benefit
from different image processing, so will the different spatial frequency band components in
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the image. This is a very powerful concept that has been exploited in a number of ways as
described in the literature. The simplest approach is to split the image data into two spatial
frequency bands: low-frequency and high-frequency. This splitting method has already
been discussed under edge enhancement. In the current discussion, the image processing
chain will once again be bifurcated around the color correction operation with only the
low-frequency component being color corrected (Figure 3.8) [25].

The result of this image processing chain modification is that high-frequency noise will
not be amplified by the color correction step. Because most of the color information in
the image is carried by the low-frequency component of the image data, there is little, if
any, visual penalty for not color correcting the high-frequency component. Noise-cleaning
benefits from the same strategy (Figure 3.9).
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Low-frequency / high-frequency stochastic noise reduction.
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A single low-frequency / high-frequency split of the image data allows different strategies
to be used on each component. Typically, most of the objectionable high-frequency noise
will be segregated into the high-frequency component leaving a relatively clean low fre-
quency image component. Therefore, the low-frequency component can be left untouched,
thus preserving the fidelity of its image content, and noise reduction performed on only the
high-frequency component. As indicated in Figure 3.9, the low-frequency component can
optionally be used to help drive the high-frequency noise reduction process.

There is no reason to stop at a two-component spatial frequency split. Full wavelet or
Laplacian / Gaussian pyramid decompositions can also be used to great effect [26]. In
these approaches after the initial split, the low-frequency component is split again into
higher and lower spatial frequency components. This splitting continues until the resulting
component sizes have reached some useful lower limit in size. Each component or par-
tial reconstruction may now be processed in a custom way. Candidate operations for such
custom processing are noise reduction, color correction, tone scale and gamma correction,
and edge enhancement. The obvious liabilities of pyramid decomposition / reconstruction
approaches are that they stress the capabilities of the compute environment with the pro-
liferation of components, and the number of degrees of freedom mushroom with each new
pyramid level, making optimum and robust tunings of such systems sometimes problem-
atic. If there is sufficient memory available, the image can be decomposed into a pyramid
representation after CFA interpolation and then reconstructed back into a single image until
after edge enhancement. In the interim, each component can potentially follow an individ-
ualized image processing path best suited to its nature.

3.3.3 Computing Environments

As would be expected, the computing environment strongly dictates the nature of the
image processing chain. The amount of available memory for storing both image data
and intermediate results, the nature of the processor’s design, and just the fundamental
speed of the processing unit are just some of the significant factors that must be taken into
account. Rather than trying to address all of the issues that can be largely of a computer
engineering nature, only topics directly associated with image processing chain design will
be discussed.

3.3.3.1 Intermediate Data Storage

There are three data structures generally used in image processing chain implementa-
tions: full frame, line buffer, and tile buffer.

o Full-Frame Processing
Full-frame processing is conceptually the simplest way to implement an image processing
chain. The entire raw image is read into memory at the beginning of the image processing
chain. Each operation in the chain then operates sequentially as an independent entity on
the image data in memory. At the end of the chain, the entire image is written to storage.
Color images are generally stored in one of three ways in full frame processing. Perhaps
the most common is pixel interleaved in which pixel value triplets are stored sequentially
(see Figure 3.10 and Figure 3.11).
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Image data from Figure 3.10 arranged in (top) pixel interleaved, (middle) frame interleaved, and (bottom) line

interleaved formats.

This method has the advantage of keeping all pixel values associated with a given support
region (pixel neighborhood) in a smaller region of the full-frame buffer. The second most
common format would be frame interleaved in which all pixels of a given color are stored
contiguously in memory. Each color channel memory block itself may or may not be stored
contiguously in memory. This is perhaps the most intuitive arrangement of the image data,
especially when applying independent grayscale operations to each of the color channels.
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The third data format is line interleaving, in which each line of color image data is stored
as separate lines of each of the individual color channels. This last approach does not see
as much application as the other two formats.

The key element that differentiates full-frame processing from the other two approaches
is that the entire image is available to each of the image processing operations in the chain.
This makes operations such as a full in-place wavelet pyramid decomposition possible. It
also restricts issues associated with support region (pixel neighborhood) boundary condi-
tions to the physical edges of the image. As an extension of this idea, all intermediate
results (e.g., an edge map) are also stored completely in memory in full-frame buffers and
the entirety of such intermediate results are available to each image processing operation.

The downside of full-frame processing is its use of large amounts of memory and the
associated memory cache misses that are incurred. Even if a computing environment has
sufficient RAM to hold all of the full frame image buffers, the microprocessor has only a
limited amount of cache memory that it can directly manipulate in a rapid manner [27]. If
image data is required that is currently not in the cache, then a relatively time-consuming
memory swapping process must occur to store the current cache contents in slower RAM
and bring the required data into the faster cache memory. Using relatively large pixel
neighborhoods can quickly slow down the image processing chain attributed to the prepon-
derance of memory cache misses.

e Line Buffer Processing

Line buffering was created in order to address the memory cache limitations. In line buffer-
ing, only enough lines of image data are read into memory at a time sufficient to produce
one fully processed output line of image data, which is subsequently sent to storage (Fig-
ure 3.12a). Once the output line is written, the line buffer is rolled by the one line so that a
new line of input data can be read into memory (Figure 3.12b). This process is continued
until the entire image is processed.

Conceptually, in the rolling process one can think of image data physically being copied
from a lower row to a higher row. In practice, a set of line data pointers would be rolled
instead to avoid a large number of unnecessary data transfers.

The immediate advantage of line buffering is that far less memory is consumed, as only
a few lines of the image are ever resident. This, in turn, reduces the tendency to incur
memory paging (i.e., storing and retrieving blocks of memory from external storage) in
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(a) Example line buffer processing content. (b) Example tile buffer processing content.

physical memory constrained systems [27]. The notable and significant downside is that
the complexity of the image processing chain implementation increases substantially. Point
processes, such as color correction, are unaffected by using a line buffering strategy. Area
processes, such as any convolution operation, can become a bookkeeping exercise.

Consider Figure 3.13a. As a simplified example, the task is to produce a line of pro-
cessed image data that is blurred with a 3 x 3 low-pass kernel, then color corrected, then
sharpened with a 3 x 3 high-pass kernel. First, in order to perform a convolution with a
3 x 3 kernel a minimum of three lines of image data must be present. Therefore, three
rows of unprocessed pixels (X) are read into memory lines 1 to 3. (Pixel interleaving is
assumed but not explicitly shown.) This allows the blurring operation (B) to be performed
and the results stored in memory line 4. The color correction operation (C), being a point
operation, can now be performed in place on line 4, producing pixels marked with both B
and C. At this point, the unprocessed pixel buffer (lines 1 to 3) is rolled so that line 2 is
written to line 1, line 3 is written to line 2, and a new row of unprocessed pixels is written
to line 3. (Again, in practice only the pointers to the memory lines would be changed.)
At this point, a new blurring and color correction set of operations can be performed and
the results stored in memory line 5. Lines 1 to 3 are rolled again and subsequently blurred
and color-corrected to populate memory line 6. Now there are enough rows of blurred and
color-corrected pixels to perform the sharpening operation, resulting in a finished row of
blurred, color-corrected, and sharpened pixels that can be written to the output storage. At
this point in the cycle, a steady-state situation has been achieved. In order to produce the
next row of finished pixels, the unprocessed pixel buffer need only be rolled one row, the
intermediate blurred and color-corrected line buffer also need only be rolled one row, and
the new pixel values computed. In a similar manner, a more elaborate image processing
can be analyzed and the corresponding line buffering requirements and sequencing of oper-
ations determined. A key observation in this regard is that as the number of area processing
operations increases so will the required number of rows in the line buffer.

o Tile Buffer Processing

Some constrained computing environments will still be overtaxed by line buffering. This
leads to the third alternative, tile buffering. With this method, a small two-dimensional
region of pixels is read into memory, and a corresponding region of fully-processed pixel
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values is produced. The size of the tile is determined by the size of the available cache
memory, with the goal to minimize the number of memory cache misses that occur during
the processing of a given tile. Consequently, execution time can be significantly reduced.
Unfortunately, algorithm complexity continues to grow, as well.

Figure 3.13b illustrates tile buffer processing. The simple image processing chain will
again be a 3 x 3 low-pass kernel, followed by color correction and then sharpening with
a 3 x 3 high-pass kernel. As can be seen in the figure, the tile size has been set to 5 x 5.
This allows the central 3 x 3 region of pixels to be blurred (B). These nine pixels can
then be color corrected (C). Finally, the central pixel can be sharpened (S). Therefore, a
5 x 5 tile produces a single fully processed pixel! (As with line buffering, the details of
the convolution operations here have been omitted. A second tile would be required to
properly perform these convolutions.) Once the output pixel has been written, the tile is
rolled in a manner similar to line buffering in order to reduce the number of computations
that need to be repeated. In a similar manner, more complex image processing chains can
be analyzed and implemented with tile buffering. As with line buffering, as the number
of area operations increases so will the required size of the tile. It is noted in passing that
hybrids between full-frame, line, and tile buffering are quite possible, depending on the
nature of the computing environment.

3.3.3.2 Physical Environments

With a number of image data buffering options available, it is appropriate to discuss
under which circumstances said methods are most applicable.

o Custom Hardware Implementations

For optimum computational efficiency, computing hardware can be explicitly designed to
implement a given image processing chain. This usually takes the form of an application-
specific integrated circuit (ASIC). Development of new ASICs is an expensive process
requiring relatively high usage volumes to make this approach financially attractive. There-
fore, to keep component costs at a minimum, image processing paths that use a minimal
amount of memory are highly preferred. This typically results in designing image process-
ing chains that can be implemented as “soda straw” pipelines. To this end, one will see line
and tile buffering used almost exclusively. Additionally, the image processing chain itself
will be relatively devoid of branch points that require intermediate results (e.g., resulting
from luminance-chrominance splitting) to be kept in memory while other computations are
performed. Because the size of the line and tile buffers is heavily influenced by the num-
ber of area operations and their respective support region radii in the chain, there will be a
strong incentive to minimize both of these aspects. As a final observation, once constructed,
the image processing chain in the ASIC cannot be changed. Therefore, the importance of
careful and robust image processing chain design in an ASIC cannot be overemphasized.

o Firmware Implementations

The digital signal processor (DSP) provides a significant degree of freedom to the image
processing chain engineer: the DSP is a programmable device. This greatly lowers the
cost of the device compared to an ASIC as the same DSP can be used in a wide variety
of products. Changes can also be made to the image processing chain in the DSP, which
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provides the ability to upgrade the resident firmware to customize for specific applications,
address bugs, or to add new features. In return for these benefits, processing speed is lost
with respect to the ASIC.

Many of the considerations of using an ASIC carry over into using DSPs. Because cache
memory is usually at a premium, line and tile buffering are still essential. The constitution
of the image processing chain, however, may vary from the ASIC equivalent. Today’s DSPs
come with built-in capabilities that streamline certain essential image processing operations
(e.g., convolution) making some decisions to perform “more” computations to actually re-
sult in shorter execution times. Therefore, designing an optimized image processing chain
for a DSP puts the additional burden on the chain designer to understand the computational
idiosyncrasies of the DSP in question.

o Desktop Implementations

Most image processing chains are prototyped in a desktop environment first. This can
sometimes lead to a false sense of potential performance in one of the environments just
discussed. Today’s desktop computers have extremely large amounts of cache memory,
compared to the DSP and (equivalently) ASIC environments. Therefore, area operations
using larger support region sizes may run very quickly on a desktop computer while coming
to a crawl in the DSP environment. Another advantage of the desktop computer is that
memory is usually copiously available. This makes full-frame processing using many extra
buffers for storing intermediate results practical, if not preferred.

If the ultimate compute environment of the image processing chain is a desktop computer,
then there is generally no incentive to use line or tile buffering unless the sizes of the
images are significant compared to the available memory. Professional and scientific digital
cameras can have sensors that have in excess of 20 megapixels. When converted to full-
color images, these become 60 megapixel entities. These numbers assume one byte of
memory per color per pixel. For such high-end applications, it is not uncommon to require
two bytes of memory per color per pixel leading to 120 megapixel images in memory. Now,
consider the common scenario where it is desired to work with two or more such images
simultaneously. Under these specialized circumstances, line or tile buffering may begin to
be attractive.

3.3.4 Resizing and Compression
3.3.4.1 Image Resizing

One of the most common image processing operations not included in the reference
chain is resizing. Resizing is simply a form of interpolation that encompasses both digitally
enlarging (i.e., digital zoom) and reducing an image. The standard interpolation methods
(e.g., pixel replication or subsampling, bilinear interpolation, and bicubic interpolation)
are again the general workhorses of this operation. In the case of image reduction, there
may also be the preliminary step of antialiasing (i.e., low-pass filtering or blurring) before
interpolation to prevent the occurrence of aliasing artifacts in the resized image [28].

Conceptually, the simplest way to add resizing to the reference image processing chain is
to append it at the end where it resizes the display RGB image (Figure 3.14). This is a useful
position if nothing is known a priori about the resizing parameters (i.e., what the final size
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FIGURE 3.14

Image resizing performed after edge enhancement (left) and before edge enhancement (right).

of the resized image will be). This would be the scenario of a user-driven postprocessing
operation, such as one might find in a kiosk or desktop application. However, even in this
situation, it may be possible to find a better location in the image processing chain.

The effects of the edge enhancement operation are particularly sensitive to the final image
size. The desired amount of sharpening for a standard-size video display image may pro-
duce an undersharpened or oversharpened image after resizing. The easiest way to address
this situation is to perform resizing before edge enhancement (Figure 3.14). In this way,
edge enhancement operates at the resolution of the final image size, providing some level
of desensitization to image resizing. The correction is not ideal and further adjustments to
the edge enhancement may be required.

If the resizing operation is constrained (e.g., only enlarging) or static (fixed to a specific
enlargement / reduction ratio), then further economies may be possible. If the size of the
final image will be reduced with respect to the original image, it makes sense to move the
resizing operation to as early a stage in the image processing chain as possible. This will
reduce the amount of data that is subsequently processed, decreasing memory usage and ex-
ecution time. In this scenario, two locations in the chain suggest themselves: immediately
after CFA interpolation (on the camera RGB image) and, further back, after the structured
noise reduction. The former case is evident. The camera RGB image is a full-color, full-
resolution image that is handled in one of the manners previously discussed. The latter case
is a bit more problematic. The task, in this case, is to resize CFA image data. The exact
details of the computations performed will be dictated by the actual CFA MRU. Formal
interpolation of the individual subsampled color channels can be performed. However, the
typical image reduction scenario is one that requires short execution times, for instance,
for video-rate readout and real-time image preview. Therefore, formal interpolation oper-
ations are usually simplified, sometimes significantly. If the image quality requirements
are sufficiently lax, one approach is to use a superpixel-inspired pixel subsampling, with or
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without antialiasing preprocessing [29]. The main engineering task in these reduced com-
putation environments is to minimize the creation of color aliasing artifacts resulting from
CFA image data reduction.

If the size of the final image will be enlarged, then it would seem that the later on in the
chain the resizing operation occurs, the better. The reasoning behind this decision is that
the number of image pixels that must be processed is inflated only at the very end, thereby
minimizing the amount of computation. This would lead to performing resizing either be-
fore or after edge enhancement. One confounding notion in this approach is the inherent
redundancy between the resizing and CFA interpolation operations. Both perform a type
of interpolation. With thought it is possible to conceive computational schemes that simul-
taneously perform CFA interpolation and resizing [30]. By directly computing a resized
full-color image from original-resolution CFA data, a significant savings in execution time
can be realized. Algorithmic complexity is the price that is paid for this improvement in
efficiency. Chapter 17 discusses image resizing issues in detail.

3.3.4.2 Image Compression

Compression of an image is more an exercise in changing the representation of the data
than in actually operating on the data itself. This is precisely true for lossless compression.
On the other hand, while lossy compression can be viewed as having the added benefit of
providing rudimentary noise reduction capabilities, the intent of most such compression
operations is to leave the final image as visually similar to the original image as possible.

JPEG has long since become identified in the industry as the lossy image compression
algorithm of choice [31]. (The lossless form of JPEG is largely ignored.) This algorithm,
based on luminance-chrominance color spaces and discrete cosine transforms, performs a
spatial frequency transform of the image, and then quantizes the frequency components in
order to eliminate visually redundant information, which, as a result, produces a smaller
image representation. With respect to lossless compression, there are a couple of choices.
Especially for Web-based applications, use of Lempel-Ziv-Welch (LZW) compression as
implemented in GIF and some TIFF file formats is a de facto standard [32]. More recently,
the LZ77 variant called deflation and implemented in the PNG file format claims slightly
better compression performance and, perhaps more importantly, freedom from any intel-
lectual property (i.e., patent) entanglements [33]. It should be hastily added that this list
is far from comprehensive, as compression continues to be an active area of research with
applications in the areas of data storage and retrieval, transmission, and security being only
some of the significant applications of this work.

Because the encoded state of the image data is generally an impractical one for any im-
age processing operation other than decompression, it immediately becomes apparent that
compression should occur on the final display RGB image prior to actual storage (Fig-
ure 3.15). This, of course, emphasizes one of the primary purposes of compression cited
above: to reduce the storage size of the image. With the standardization of sSRGB space,
it has become commercially attractive to build JPEG hardware and firmware engines that
perform an otherwise complex algorithm in a minimal amount of time. As a result, any
digital camera that produces a fully processed image can largely be expected to compress
that image in JPEG format prior to storage.
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FIGURE 3.15

On a historical note, image compression was once performed much earlier in the image
processing chain when digital cameras had only primitive compute capabilities on-board
(see Figure 3.15) [25]. The role of the digital camera was once solely to capture a raw
CFA image and then store that image in a compressed format for later image processing
in a desktop environment. While it was clear that a luminance-chrominance space image
can be compressed much more effectively than an RGB space image, CFA image data gen-
erally cannot be converted directly to, for example, YCrCb without an intermediate CFA
interpolation step. Assuming a Bayer pattern CFA, the solution was to create a temporary
interpolated green pixel value at each red and blue pixel location using a simple boxcar
average of the four neighboring green pixel values. This in turn permitted the computation
of R G and B G color differences at the red and blue pixel locations. The result was a
luminance (green, full resolution)-chrominance (R G, B G, quarter resolution) represen-
tation of the CFA data that could be compressed in a lossy manner, resulting in a relatively
small image file to be stored [34]. Upon decompression and transformation back to RGB,
the temporary interpolated green pixel values were discarded in favor of results generated
by better CFA interpolation methods. Detailed treatment of camera image compression can
be found in Chapters 14 and 15.

3.3.5 Other Factors

Until recently, there has been a largely tacit assumption that the image data in the chain
has been kept in the same photometric space as originally read from the sensor. There are
many situations when this may not produce optimum results. These are discussed below.
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TABLE 3.1
First values of the 8-bit linear to 8-bit video gamma transform.

Representation Values

8-bit linear o 1 2 3 4 5 6 7 8 9 10
8-bit video 0 13 22 28 34 38 42 46 50 53 56
TABLE 3.2

First values of the 10-bit linear to 8-bit video gamma transform.

Representation Values

10-bit linear o 1 2 3 4 5 6 7 8 9 10
8-bit video 0 3 6 10 13 15 18 20 22 23 25

3.3.5.1 Bit Depth

The number of code values used to span the range from full black to full white heavily
influences the amount of quantization error (contouring) that will be seen in the final image.
Unfortunately, this is the not the only factor as local scene content, image noise, and the
Weber’s Law sensitivity of the HVS also come into play. Still, bit depth can be considered
of prime importance. Opposing the solution of simply carrying enough bits to eliminate
quantization errors is the corresponding requirement of additional memory use to store and
manipulate the extra data resolution.

Because sRGB video space consists of 8-bit data [0-255], it is natural to want to design
an entirely 8-bit image processing chain. Supporting this decision is that to use larger
bit depths immediately doubles (at least) the memory requirement from one-byte-per-pixel
value to two-bytes-per-pixel value, unless data packing is used, which brings its own series
of issues. Unfortunately, 8-bit linear data will not populate all 256 states after the video
gamma transform. As shown in Table 3.1, the first 11 code values in 8-bit linear space map
into only 11 of the first 57 code values in 8-bit video gamma space. The other 46 code
values will never be populated. Because of the compressive nature of the video gamma
curve, more of the larger code value states will be populated, but significant contouring
should be expected in the shadow regions of the image.

Even-numbered bit depths appear to be preferred over odd-numbered bit depths, so the
next data resolution level considered is usually 10 bits [0-1023]. The number of missing
states after transformation to video gamma space is significantly reduced, but not elimi-
nated (Table 3.2). Although there may be a small amount of contouring visible in shadow
regions, this level is usually acceptable for consumer photography. For professional pho-
tography, however, it is best that all video gamma states are populated. This leads to the
next bit depth to be considered (Table 3.3), which is 12 bits [0-4095].

While all of the output states are now populated in this example, quantization error can
still occur as a result of some of the input 12-bit states being depopulated either because
of poor exposure during capture (e.g., underexposure followed by digital exposure com-
pensation) or loss of data resolution during the image processing chain computations. As
a result, some professional digital cameras now employ 14 bits [0-16383]. From Table 3.4
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TABLE 3.3
First values of the 12-bit linear to 8-bit video gamma transform.

Representation Values

12-bit linear o 1 2 3 4 5 6 7 8 9 10
8-bit video o 1 2 2 3 4 5 6 6 17

TABLE 3.4
First values of the 14-bit linear to 8-bit video gamma transform.

Representation Values

14-bit linear 0 1 2 3 4 5 6 7 8 9 10
8-bit video 0o 0 O 1 1 1 1 1 2 2

it is clear that several of the 14-bit steps could be depopulated, and there would still be a
great likelihood that all of the 8-bit video gamma states would be used.

The choice of bit depth is additionally complicated by matters beyond what have already
been discussed. As the number of bits increases, the possibility of data overflow during the
computation of intermediate numerical results becomes increasingly likely without using
higher precision arithmetic. Because higher precision arithmetic requires more memory
and takes longer to perform, this can become a significant liability. Additionally, the use
of lookup tables with higher bit depths can become unwieldy as the sizes of the tables are
forced to grow if numerical precision is to be preserved. In addition to having to maintain
such large lookup tables, operations involving large tables can quickly produce an undesir-
able amount of memory cache hits.

3.3.5.2 Nonlinear Photometric Spaces

One compromise solution to the bit depth question is to store the image data in a nonlin-
ear photometric space. One such space is the 8-bit video gamma space (see above). This
is a solution frequency found in video imaging applications (see below). Another conve-
nient family of spaces, to be discussed shortly, is based on logarithmic responses. The crux
of these solutions is to constrain the numerical bit depth to eight bits by discarding code
states that are least likely to produce visually objectionable image quantization artifacts.
Referring to the Weber’s Law response of the HVS, this suggests a compressive function
response that preserves most of the states in the lower portion of the code range and discards
states more frequently as the code values increase (i.e., a logarithmic-like response).

In the context of the image processing chain, the data would be produced from the image
sensor and A/D converter at, for example, 10-bit resolution and then immediately trans-
formed to an 8-bit space for storage in RAM. A pure logarithm function, alog(1+x),
to perform this transformation will have problems near zero because of high slope of the
curve and the resulting number of missing output states. Mimicking the solution used by
the SRGB video gamma curve, a linear segment of unity slope is used to replace the log-
arithm in this region and the two functional pieces are matched in value and slope at the
knot point to eliminate visible discontinuities (Figure 3.16) [35].
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Comparison of linear-log transform (KLUT) and sSRGB video gamma transform.

The general form of this transform then becomes
X, forx <k
y_{k%—kln(;{‘),forx>k (.11

o
Wa ()
1

where W_; (x) is the —1 branch of Lambert’s W function [36]. The input code value range
is from zero to x;, and the output code value range is from zero to y;. This approach can
be augmented by adding a linear segment to the upper end of the logarithm to regulate the
slope of the function in that region.

Once the functional form of the nonlinear transform is determined, the image data in the
image processing chain can be freely transformed between nonlinear and linear spaces as
needed. To speed the transform processes, lookup tables can be used. If this is impractical
due to the size of the lookup table, the transform function can be approximated by a rational
function of the form (x+ ayp) / (b1x+ bg), which may be simple enough to be recomputed as
needed. Consideration must be given to keeping the number of transform-inverse transform
cycles to a minimum as each operation may be lossy in terms of data resolution. To this
end, while some image processing operations, such a color correction, in reality need to be
performed on linear data (but see below), it is plausible to try to perform other operations,
such CFA interpolation, in the nonlinear space.

K — (3.12)

3.3.5.3 Extended Dynamic Range

It is well known among photographers that silver halide films provide significantly more
dynamic range capture capability (5 stops) than do silicon sensors (2 stops). Closing this
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CFA MRU: (a) with different photometric gains and (b) with red (R), green (G), blue (B), and panchromatic
(P) pixels.

performance gap is presently an active area of research in both academia and industry. The
image processing chain ramifications of two prominent approaches are discussed below.

o Multiple Color Channel Sensitivities
One general approach is to expand the MRU of the CFA pattern, and for each color in the
pattern provide two or more versions with different photometric gains [37].

Figure 3.17a illustrates one approach. Pixels marked with an asterisk have a higher pho-
tometric gain than those that are not. In processing, the point will inevitably be reached
where the two inherent photometric ranges will need to be merged to produce an extended
dynamic range image. This may take the form of a final image with the entire dynamic
range preserved to provide the maximum flexibility in subsequent post-processing opera-
tions, or simply as an intermediate entity that is eventually reduced to an 8-bit SRGB image
in a way that takes advantage of the extended dynamic range, for instance, via a custom
tone scale transform. This will reintroduce the issue of bit depth and data resolution into
the image processing chain design. Typically, one to two extra bits of data will be needed
for each stop of exposure difference between the two photometric gains if no quantizing is
performed. Where the merge of photometric ranges occurs in the image processing chain
is a subject that must also be considered. One natural place for this is as early as possible
in the image processing chain, usually CFA interpolation [38]. Once merged, the image
can proceed through a normal image processing chain, albeit with a larger dynamic range.
Alternately, the two dynamic ranges could be kept separated with custom image processing
paths, in the manner of luminance-chrominance or high- and low-frequency splitting, until
later on in the chain.

o Separate Panchromatic Channel

A different approach is to add a spectrally broad channel to the CFA MRU and use the
natural boost in photometric sensitivity to create an extended dynamic range image [39],
[40], [41].

Figure 3.17b illustrates one such arrangement. The pixels marked P in this figure are
associated with the panchromatic (broad) spectral channel. The typical spectral response
of such a panchromatic channel as compared to the more traditional RGB color channels
is shown in Figure 3.18. The RGB color channels can be used to create a low-resolution
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FIGURE 3.18

Typical spectral responses of red, green, blue, and panchromatic CFA filters. Also shown is a typical spectral

response for an infrared (IR) cutoff filter.

full-color image with a typical photometric sensitivity. The panchromatic channel can be
used to create a high-resolution grayscale image with high photometric sensitivity. These
images can be merged by taking the low-frequency component of the full-color image and
adding to it the high-frequency component of the panchromatic image [42], [43]. The result
is a full-color image with extended dynamic range that is achieved by significantly lowering
the noise floor of the imaging system. As discussed previously, the image processing chain
can be bifurcated to process the low-resolution full-color image and the high-resolution
panchromatic image differently before the point of merger.

3.4 How Video Differs from Still Photography

The foregoing discussion has been focused on still photography. When considering video
photography, a number of assumptions must be significantly reassessed. Perhaps the most
important issue is that real-time video image processing must be accomplished at video
rates (e.g., 30 frames per second). This means the entire image processing chain must
produce a fully finished video frame in around one-thirtieth of a second. This stands in
stark contrast to a consumer digital still camera, which may take a second or two to produce
a finished image. As a direct consequence, in order to lower the computation demands,
pixel resolutions of video frames are much lower than for digital still images. Even with
dramatically lowered pixel resolutions, it becomes almost immediately clear that the image
processing chain must be significantly abbreviated for the video environment.
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Idealized video image processing chain.

Somewhat offsetting the problem of limited execution times is that video image process-
ing can take advantage of temporal averaging between consecutive frames. When the video
sequence is viewed, each frame is only displayed for, continuing our example, one-thirtieth
of a second. This is close to the refresh rate of the HVS, which is approximately between
20-60 Hz [44]. Each frame will “blur” into the next one and provide a perceived smoothing
effect on the image. As a result, a certain amount of noise reduction comes “for free”. This
means that the image quality of the individual video frame does not need to be as high as a
corresponding digital still image.

One engineering decision in video image processing chain design that seems to be made
almost universally is to transform the raw data from the sensor directly into video gamma
space and then retain it in that nonlinear space for all subsequent image processing opera-
tions (see Figure 3.19).

This has multiple benefits. First, the data resolution is fixed at 8 bits, permitting the use
of a single byte of memory for each pixel value. Second, no time is spent transforming
between photometric spaces in order to produce a final SRGB video frame. Third, quanti-
zation errors will tend to occur in the highlight of the image, where they are visually less
objectionable, and will tend not to occur in the shadows of the image, where their visibility
is more pronounced.

The liability with this “all-video gamma” approach is that certain image processing oper-
ations, most notably color correction, perform poorly in nonlinear spaces. Color correction
is generally predicated on Grassmann’s Laws [45], which describes color mixing as a lin-
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ear phenomenon. For colors with low amounts of saturation (i.e., nearly neutral), video
gamma computations will behave similarly to linear space computation. However, as the
saturation increases (i.e., colors become more “colorful”’) computations in video gamma
space can begin to produce results in significant variance from Grassmann’s Laws. As a
result, unexpected and unwanted color shifts may result from color correction. Therefore,
performing color correction in video gamma space will reduce color fidelity. One way to
address this problem is to tune the color correction matrix values to less aggressively cor-
rect the output colors in order to minimize the visibility of such errors. As a result, the loss
of color accuracy due to reduced color correction has become part of the UE for consumer
video photography.

In the idealized video image processing chain shown in the figure, no stochastic noise
reduction operations are performed. Stochastic noise is considered to be addressed by ei-
ther temporal averaging or any binning (summing) of adjacent pixel values performed by
the hardware to produce the video frame raw CFA image data. (Temporal averaging will
generally have no similar effect on structured noise.) After CFA interpolation, RGB data
is transformed into YCC space, although these two operations could be consolidated into
a single operation of CFA interpolating RGB data directly into YCC data if computational
economies result. After color correction and edge enhancement, the video frame is com-
plete and can be written to the output video stream, leaving the system ready to process the
next frame. Exposure and white balance calculations are performed in a feedback loop be-
tween consecutive frames in the video sequence in order to prevent abrupt and undesirable
changes in perceived image brightness or color.

The above describes video processing issues from the processing chain design point of
view. Typical camera video processing tasks, such as video-demosaicking, resolution en-
hancement and video stabilization are discussed in Chapters 18 to 20.

3.5 Conclusion

The image processing chain that transformed digital camera raw sensor image data into
a full-color fully processed image was the focus of this chapter. The possible orderings of
individual operations and associated implementation details that constitute the image pro-
cessing chain were discussed. Despite the seemingly immense number of available degrees
of freedom, the problem of image processing chain design was seen to be overconstrained.
The image processing task was to balance the opposing requirements of desirable image
quality and modest compute resource use. It was shown that image processing operations
that were highly effective might not be viable candidates for image processing chains in
constrained compute environments. In the end, the process of designing an image process-
ing chain became one of taking relatively simple, well-known image processing operations
and staging them in a manner that produced the best synergistic effects.
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4.1 Introduction

Aliasing is an artifact of digital images; it occurs when an image contains detail smaller
than the pixel pitch. This chapter starts with an intuitive look at how aliasing can occur in
sampled images. Then, the history and the description of antialiasing filters are presented
in Section 4.2. Nyquist diagrams, which provide a way to analyze and visualize antialias-
ing filter requirements, are discussed in Section 4.3. Section 4.4 discusses the modulation
transfer function, a measure of system resolution, because the occurrence of aliasing is de-
pendent on system resolution. Lens modulation transfer function is the focus of Section 4.5.
Sections 4.6 and 4.7 present a brief description of convolution and Fourier analysis. Many
of the details of sampled imaging systems become apparent when analyzed in the frequency
domain; therefore, Section 4.8 steps through the sampling process in the spatial and fre-
quency domain. Subsequently, reconstruction issues are discussed in Section 4.9. Finally,
antialiasing filter construction and testing are the central topics of Sections 4.10 and 4.11,
and conclusions are presented in Section 4.12.
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(b)

FIGURE 4.1

Aliasing effects: (a) image with aliasing, and (b) antialiased image.

4.1.1 Aliasing

A digital camera is an example of an imaging system that samples with a regular array of
points. Aliasing is an artifact of sampled imaging systems. Figure 4.1a shows an example
of aliasing in a digital image. The swirling lines are the result of narrow stripes that have
been imaged so that the stripes look like a few wide lines; this is an aliasing artifact. The
image in Figure 4.1b has been properly prepared prior to sampling; the narrow stripes are
not resolved but they do not produce swirling wide line artifacts. Low resolution is better
than low frequency artifacts that do not represent the original object.

Once an image is sampled, the aliased low-frequency content is difficult to correct au-
tomatically because it is the same as actual low-frequency content. Software is available
to correct aliasing artifacts but intervention is usually required to locate the artifact. Silver
halide photographic systems sample on a random array of points so they do not produce
aliasing artifacts. Interestingly (and surprisingly), for local areas, the human retina samples
a regular array of points, a close-packed hexagonal grid. The eye lens limits the image
spatial frequency content to prevent aliasing [1].

Figure 4.2 is the beginning of an intuitive look at the cause of aliasing. A section of im-
ager 1 mm long is shown as a two-dimensional (2D) grid. The spatial image at the bottom
varies sinusoidally in the horizontal direction. The top bars represent the sampled image,
displayed so that each pixel occupies one square. This is a simple way to display a basic
image from a sampled image. The example imager samples at a rate of 40 samples/mm;
this sampling rate is called the Nyquist rate. The spatial frequency imaged on the array is
one-half the Nyquist rate, 20 cycle/mm,; this is called the Nyquist frequency. According
to the Nyquist criteria [2], a spatial frequency greater than half the sampling rate cannot
be reproduced. The Nyquist criterion is further extended by the Whittaker-Shannon the-
orem [3]: if a signal is band limited to within the Nyquist frequency of the sensor, the
signal can be recovered, without error, from the sampled signal. Or, worded differently:
any band-limited function can be specified exactly by its sampled values taken at regular
intervals, provided that these intervals do not exceed some critical sampling interval.
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FIGURE 4.2
Nyquist frequency.

Figure 4.3 illustrates a pathological case at the edge of the Whittaker-Shannon theorem.
A 20 cycle per mm image is shifted by one-half pixel. Each pixel is centered on the average
value of the sine wave and each pixel sees half of the bright portion of the sine wave and
half of the dark portion. There is no pixel-to-pixel modulation because all the pixels see
the same amount of light. This sampled image cannot be recovered.

FIGURE 4.3

Shifted sine wave.
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FIGURE 4.4

21 Cycle per millimeter sine wave.
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FIGURE 4.5

Aliasing in temporal signals.

The Whittaker-Shannon theorem is violated in Figure 4.4; a 21 cycle per mm image is
falling on a 40 sample per mm imager. This spatial frequency exceeds the Nyquist criteria.
Notice the sine wave image starts in phase with the pixels, so it is reproduced. It goes out
of phase around the tenth pixel, so these pixels become a wide band. The image goes back
in phase at the twentieth pixel, out of phase again at the thirtieth, and in phase again at the
fortieth pixel. This leads to an image with wide bands separated by narrow bands. The
sampled image cannot reproduce the original image because 40 pixels can only reproduce
20 cycles of light-to-dark transitions and 21 cycles requires 22 light-to-dark transitions.
This is an aliasing artifact.

Figure 4.5 is a common representation of aliasing. The signal is usually temporal and
it is sampled with an analog-to-digital converter or some other sampling device. The dark
squares are evenly spaced samples on the high-frequency sine wave. The sampling in this
case is well below Nyquist and the result is a very low-frequency aliased representation of
the actual sine wave.
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FIGURE 4.6

Digital imaging system.

4.1.2 Digital Photographic Systems

A typical digital photographic system contains a lens, an image capture device, an image
display device, and some amount of image processing capability. The basic diagram in
Figure 4.6 can be used for a film scanning system, microscopy, astronomy, or any other
digital imaging system that starts with an optical image.

Aliasing is prevented by band-limiting the optical image spatial frequencies to the
Nyquist frequency and below. Fourier analysis is used to determine if the frequency con-
tent of the image is band-limited to the Nyquist frequency. Most digital cameras use an
antialiasing filter to band-limit the optical image spatial frequencies. Limiting the image
spatial frequencies is equivalent to blurring the image, so these filters are sometimes called
blurring filters, which really scares the marketing staff.

According to Greivenkamp (Reference [2], p. 676), the first antialiasing filter appears to
have been invented by Pritchard for color stripe single-tube video cameras. Prior to single-
tube color cameras, aliasing was not a substantial problem. Black and white cameras and
three-tube color cameras have an analog horizontal signal. The vertical sampling has 100%
fill so it does not alias substantially and there are no complications from color errors. Color
stripe video cameras sample color horizontally and early cameras used analog electronic
algorithms to produce a full-resolution color image. Aliasing in a single-tube color stripe
camera can produce color artifacts that do not even match the color name of the original
object.

4.2 Nyquist Domain Graph

The previous examples have been one-dimensional (1D). The Nyquist frequency of 2D
imaging systems depends on direction. A Nyquist domain graph is used to display the locus
of points at the Nyquist frequency in two dimensions [4]. Spatial frequency on the graph
corresponds to the inverse of the spacing in the spatial domain. Radial distance from the
center of the graph corresponds to spatial frequency.
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Bars at the Nyquist frequency: (a) imager, and (b) green channel Bayer pattern.
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FIGURE 4.8

Nyquist domain graph with imager sampling frequency normalized to 1/p. Solid line corresponds to the
monochrome imager, dash line corresponds to the green channel, and dot line corresponds to the red and

green channels.

Figure 4.7a is a small section of a monochrome imager. The vertical and horizontal bars
are at the vertical and horizontal Nyquist frequency. The period of the bars is twice the
pixel pitch (p). The frequency of the bars is 1/(2p). Notice the spacing of the diagonal bars
is smaller by 1/(square root of two). The corresponding Nyquist domain graph is shown
in Figure 4.8 by the solid line, with the horizontal and vertical coordinates normalized
to the sampling frequency, 1/p. Normalizing to the sampling frequency generalizes the
discussion. The diagonal coordinates are at 1/(2p) or 1.414p. A monochrome imager has a
higher Nyquist frequency diagonally than it has on the vertical and horizontal axes.

Single imager color systems with a color filter array (CFA) pattern add additional com-
plexity to the Nyquist domain graph. A section of an imager with a Bayer CFA pattern is
shown in Figure 4.9; the pattern has three color channels that are analyzed separately. The



Optical Antialiasing Filters 111

4
!

G|R|G|R|[G|R]|G[R
& [BIG|BIG|B|G]|B|G
LGRGRGRGR
B[G|[B|G[B|G]|B|G
G[R[IGIR[GIR]G[R
B|G|B|G[B|G|B|G
T_GRGRGRGR

L
L

FIGURE 4.9

Bayer color filter array.

green channel is a square pattern with twice as many elements as the red and blue chan-
nels. However, the square pattern is rotated 45 degrees so that it looks like a checkerboard.
The relationship between the diagonal and the vertical / horizontal Nyquist frequency is re-
versed compared to the monochrome imager because the green channel is a square pattern
rotated 45 degrees.

The green pattern is shown with bars at the Nyquist frequency in Figure 4.7b. The pixels
are not contiguous; this is called a sparse array. The Nyquist rate is still the inverse of the
period for a sparse array. The horizontal and vertical Nyquist frequency, normalized to the
monochrome pixel pitch, is a half cycle per sample. The period of the diagonal bars at the
Nyquist frequency is larger so the Nyquist frequency is lower on the diagonal. The green
channel Nyquist domain graph is the inner diamond shown in Figure 4.8 by the dash line.

As shown in Figure 4.9, the red and blue channels have the same pitch, 2p, where p is
the monochrome pixel pitch. Both patterns are square sparse arrays with a spatial offset
between the two channels. The offset does not affect the analysis. The red and blue chan-
nel Nyquist domain graphs are the same and they are similar to the monochrome Nyquist
domain graph except the frequencies are half as high because the red and blue pitch is twice
as large. The Nyquist domain graph for the red and blue channels is shown in Figure 4.8
by the dot line.

4.3 The Four-Spot Birefringent Antialiasing Filter

The four-spot birefringent antialiasing filter is the most common antialiasing filter. The
construction of this type of filter is discussed in Section 4.10; however, a brief discussion
of birefringence will be useful here.

Some optical crystalline materials are birefringent; calcite is a naturally occurring ex-
ample of a material that is very birefringent. These materials can be cut so a ray of light
that enters the crystal is split into two rays that take different paths through the crystal and
emerge with a separation between the rays. An example is shown in Figure 4.10a and Fig-
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FIGURE 4.10

Birefringent antialiasing filter: (a) birefringence on the crystal slice, (b), the slice with the outline of a plate

that will be included in an antialiasing filter, (c) four-spot blur filter.

ure 4.10b. The amount of separation is determined by the material and the thickness of the
plate. When a plate of birefringent material is placed behind a lens it will spilt the image
into two images with a separation between them. For a small separation the image appears
to be slightly blurred. Multiple plates of a birefringent material can be made to produce
four or more images that will blur the image in many directions.

The four-spot birefringent filter limits the scene spatial frequency content by spreading
the light from every point in the image over four points as shown in Figure 4.10c. The
thickness of the filter determines the spacing between the four spots. The separation is
chosen to limit the image spatial frequency content to the Nyquist frequency and below.
The separation for a monochrome imager is the pixel pitch. The details of the modulation
calculation are presented in Section 4.8.

The modulation at the Nyquist frequency is reduced as shown in Figure 4.11a; light from
a single point is focused on two pixels. This is true for every point on the object. If the
object is a sinusoid that produces an image at the Nyquist frequency, the sinusoid will be
dark on one pixel and light on the next. Blurring light from each object point over two
pixels produces the same light level at every pixel when the image is a sinusoid at the
Nyquist frequency so there is no modulation at the Nyquist frequency.

Alternatively, looking through the filter from the pixel (Figure 4.11b), the light that falls
on the pixel will appear to come from two places in the object plane. If the object is a
sinusoid that will produce an image at the Nyquist frequency, the two spots will appear to
come from points 180 degrees of phase apart so these points will always add to the average
value. This is the case for every pixel, so there is no modulation at the image plane for

(a) (b)
FIGURE 4.11

(a) Antialiasing filter effect on the image plane. (b) Antialiasing filter looking back at scene.
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() (b)
FIGURE 4.12

Preventing color interpolation error: (a) highlight falling on one color component, (b) spreading the light over

four pixels to prevent the color error.

sinusoids at the Nyquist frequency.

The same four-spot filter is used for Bayer CFA imagers. It should be clear, based on the
Nyquist domain discussion, that this blur filter will not prevent aliasing in a Bayer CFA im-
ager. There are a few reasons why this apparently inadequate filter is adequate. First, there
is resistance to applying enough blur to prevent aliasing because no one likes to pay for pix-
els and an expensive lens and then blur the image. Second, many interpolation algorithms
take advantage of the correlation between channels so the effective color channel arrays
may not be as sparse as they appear. Some examples of this are presented in Section 4.11.
Next, the antialiasing filter prevents color interpolation errors. It is not unusual for a high-
light, like a catch light in an eye, to fall on one pixel. The catch light in Figure 4.12a
will be rendered bright red by the interpolation algorithm because it only illuminates a red
pixel. The antialiasing filter spreads the light over four pixels as shown in Figure 4.12b to
prevent the color error. Sharp edges may have the same type of problem depending on the
interpolation algorithm. It is possible to make a birefringent antialiasing filter that has the
appropriate spacing for each color but this filter is difficult to manufacture [2].

4.4 Modulation Transfer Function

An understanding of modulation transfer function (MTF), convolution, and a few Fourier
transform pairs are required to understand the analysis of sampled imaging systems. MTF
analysis is used to determine the limits of the optical image spatial frequency content at
the imager. The MTF for each component can be measured or determined from theory and
then the system MTF limits can be determined by cascading the component MTF’s.

The MTF is a measure of system and component spatial resolution performance [5]. It
is the ratio of the signal output modulation M, to the sine wave input modulation M; as a
function of spatial frequency ». Modulation M is determined as follows:

Mmax B Mmin

M =" (4.1)
Mmax +Mmin

where M, and M,,;, are the sine wave peak and valley measurements. The input modula-
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(a) (b)

FIGURE 4.13

Input and output sine wave. Top row shows: (a) original sine wave with 100% modulation, and (b) image of
sine wave with 33% modulation.

tion can be measured in luminance or any other linear metric. The output modulation also
has to be measured in a linear metric like transmission or linear code value. The MTF ratio,
the ratio of the output modulation to the input modulation, is calculated as follows:

M,(r)
Mi(r)

MTEF(r) = 4.2)
The MTF curve is the result of a number of MTF measurements taken at different spatial
frequencies.

To produce an MTF curve, an input sine wave as shown in Figure 4.13a is imaged to
produce the output image shown in Figure 4.13. The input and output max and min are
measured. The modulation is calculated using Equations 4.1 and 4.2 to determine the
modulation at one spatial frequency. As previously mentioned, the complete MTF curve is
the result of repeating this procedure for a range of spatial frequencies.

Figure 4.14 is a sine wave pattern that increases in frequency linearly with distance. This
is commonly called a chirp because of its similarity to the sine wave pattern of a bird chirp.
This pattern can be used to make an MTF measurement over a range of frequencies with just
one image. The middle graph in Figure 4.14 is a trace of the input and output chirp. Notice
the low frequency part of the pattern is reproduced with good modulation, but the higher
frequencies drop off; therefore, the MTF drops as shown at the bottom of Figure 4.14.

MTF is nominally expressed as a number from zero to one, or it can be converted to a
percentage. When a digital image is sharpened, the MTF at some frequencies can exceed
one. Sharpening can also be applied to silver halide photographic systems. Silver halide
film can be formulated to chemically enhance edges so the MTF may be larger than one at
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FIGURE 4.14
Chirp image.

some spatial frequencies. Negative MTF values are also possible; these are the result of a
phase change in the image. For example, a white peak in an image may be at the location
of a dark peak in the object.

The MTF measurement assumes the system is linear or can be made linear. Nonlinear
systems can be made linear by measuring the low frequency transfer function to convert the
output to the corresponding input luminance which is a linear measure. Silver halide pho-
tographic materials can be made linear with this technique even though they are inherently
nonlinear.

4.5 Lens Modulation Transfer Function

A lens is usually the first component in a digital imaging system. It can reduce the
system spatial frequency content, but lens effects change with f-number and focus so the
lens alone is not an effective control for aliasing. In most systems, the lens controls the
spatial frequency content beyond the Nyquist frequency, but a birefringent blur filter is
usually used to control spatial frequency content near the Nyquist frequency.

Lenses are designed by adjusting glass types, surface shapes, and spacing to optimize
the resolution in the image plane. This type of analysis is based on geometric optics.
It is possible to design a lens that images perfectly based on geometric optics but lens
performance is further limited by diffraction. Lenses that focus all the rays within the
effects of diffraction are called diffraction-limited lenses. The point spread function for a
diffraction-limited lens is an Airy disk. Figure 4.15a is an image of an Airy disk that has
been adjusted to make the outer rings visible (Reference [5], p. 160). The outer rings are
very faint in an accurate rendition. Eighty-four percent of the power is in the center core,
7% 1is in the first ring and 3% is in the next ring. The equation for the Airy disk is [6]:

27 ?
E(g,A,N) = < (1,5 SV)> (4.3)
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(a) (®)

FIGURE 4.15
(a) Airy disk, (b) Airy disk graph.

where E is the relative illumination, ¢ is radius, A is wavelength in the same units as ¢, N
is lens f/#, and J; (+) is a Bessel function of the first type. The Airy disk graph is shown in
Figure 4.15b.

For most photographic applications, the wavelength range of interest is 400 to 700nm.
The center of the wavelength range, 550nm, is chosen to determine the size of the Airy
disk. For a selected wavelength, the diameter of the center core from zero crossing to zero
crossing is strictly a function of the lens f/#. The diameter can be determined as follows:

D = 2.44AN (4.4)

As arule of thumb, the diameter of the bright spot in micrometers is approximately equal to
N, the f/#, because the product of the wavelength (approximately 1/2 mm) and the constant
(value 2.44) is close to one.

Figure 4.16a shows a diffraction-limited lens MTF curve (see Reference [5], p. 377).
All diffraction-limited lenses have the same MTF curve shape. The zero crossing, called
the cutoff frequency, is a function of the lens f/#. The cutoff frequency increases with
increasing aperture size, which corresponds to decreasing f/#. The cutoff spatial frequency
(ve) 1s:

1
Ve = 4.5
c= N (4.5)
1
0.8
S8
E 0.6 cutoff
0.4 frequency
0.2 ~J
0 |

0 02 04 06 08 1.0 12
relative spatial frequency

() (b)

FIGURE 4.16
(a) Two-dimensional lens MTF, (b) three-dimensional lens MTF.
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An equation for diffraction limited lens MTF as a function of spatial frequency is pre-
sented in Section 4.8. Lenses with a round aperture have a circularly symmetric diffraction-
limited MTF; the MTF is the same for a given spatial frequency, regardless of direction.
Figure 4.16a shows a 2D MTF whereas its three-dimensional version is depicted in Fig-
ure 4.16b.

4.6 Fourier Analysis and Convolution

Fourier analysis is used to analyze sampled systems because the MTF of each component
or system is the modulus of the Fourier transform of the point spread function for that
component or system. In addition, Fourier techniques can make sampled system analysis
easier when convolution is required. The Fourier transform of the convolution of f(x) and
g(x) equals the product of the Fourier transforms of f(x) and g(x). In addition, the Fourier
transform of the product of f(x) and g(x) is the convolution of the Fourier transforms of
f(x) and g(x). In many cases, it is easier to determine the result of a convolution using
Fourier techniques than it is to directly compute the convolution.

Gaskill [7] presents an excellent explanation of convolution. A simplistic explanation of
convolution in one dimension is offered in Figure 4.17. A rectangle is convolved with a
rectangle. Convolution, by definition, includes flipping the first function left to right. Most
sampled imaging system functions are symmetric, so neglecting the flip does not change the
result. Starting at Figure 4.17a, the rectangle slides along the axis in infinitely small steps.
The two functions are multiplied and the convolution is the area of the product at each point.
In this case, the convolution is zero until the shaded rectangle touches the second rectangle
shown in Figure 4.17b, then it ramps up, as shown in Figure 4.17d. The convolution is
constant while the first rectangle is inside the second rectangle and then drops back to zero
as the first rectangle leaves the second rectangle, as shown in Figure 4.17e.

A second case, depicted in Figure 4.18, shows the convolution between two equal rect-
angles. Notice that the rectangles are only exactly inside each other at one point, thus
resulting in a triangle rather than a trapezoid. The image formed by a lens is the result of

& “‘j
(@) (©) () (e)
FIGURE 4.17
Convolution.
[ =/
FIGURE 4.18

Convolution with equal rectangles.
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Airy disk convolution.
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FIGURE 4.20

(a) Rect function. (b) Sinc function.

a 2D convolution between the object and the lens point spread function. The point spread
function for a lens is an Airy disk. To simplify the explanation a magnification of one and
a bar target object are used. The Airy disk slides over the bar target in Figure 4.19, and the
convolution is calculated at each point, resulting in the blurred bar target.

4.7 Fourier Transform Pairs

There are a few Fourier transform pairs needed for sampled image system analysis. For a
more detailed discussion of Fourier analysis refer to References [3] and [7]. There are also
two properties of the Fourier transform that are very useful for imaging system analysis.

First, the Fourier transform of the convolution of two functions equals the product of
the Fourier transforms of the individual functions. Second, except for scaling, the Fourier
transform of the Fourier transform of a function is the original function. The rect function
described below is a good example of this. The Fourier transform of a rect is a sinc and the
Fourier transform of a sinc is a rect.

The rect function is a rectangle in the spatial domain. Figure 4.20a is a 1D rect of width a.
The Fourier transform of a rect as shown in Figure 4.20b is a sinc. The following describes
the sinc function:
sin(mar)

r

F (rect (g)) = |a|sinc(mar) = (4.6)
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(a) (b)
FIGURE 4.21

(a) Two-dimensional rect, (b) two-dimensional sinc.

where a is the width of the rect on the x axis in the spatial domain and the frequency
variable is r. The F indicates a Fourier transform should be taken. In general, the width of
a Fourier transform is inversely related to the size of the original function. In Figure 4.20b,
the first zero of the sinc in the frequency domain is at 1/a where a is the width of the rect
function in the spatial domain.

The 2D rect is a rectangular solid (Figure 4.21a). Its Fourier transform:

sin(zar) sin(whs)

F (rect (g%)) = |al| sinc(mar) - |b| sinc(mhs) = 4.7)

r TS

is a 2D sinc (Figure 4.21b). The 2D sinc is the product of two 1D sinc functions (this is
called a separable function). Where, in the spatial domain, a is the x-axis width of the rect
and b is the y-axis width. The corresponding frequency variables are r and s.

The delta function (also known as the Dirac delta function or the impulse function), is
represented graphically in Figure 4.22a. The arrow is optional; it indicates that the height
is not as shown. The function has an area of one and a width of zero. The function is zero
except at x = 0. The function notation and definition, including a shift in two dimensions,
is:

0(x—a,y—b)#0 atx=a,y=>b

S(x—a,y—b)=0 atx#a, y#b (4.8)

The Fourier transform of the delta function at x and y coordinates a and b is an exponential:

F(8(x—a,y—b)) = ¢ 72rarts) (4.9)
! N I O O 0 O A
-00 0 0 -0 0 0 -0 0 0
(@) ) (©

FIGURE 4.22

(a) Delta function. (b) Comb function. (¢) Fourier transform of comb function.
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FIGURE 4.23
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FIGURE 4.24

(a) Cosine with pitch p. (b) Fourier transform of cosine, two delta functions at, with frequency 1/p.

The comb is a 1D array of delta functions. A representation is shown in Figure 4.22b. The
Fourier transform is another comb with spacing equal to the inverse of the original function
(Figure 4.22c¢).

The 2D comb function is sometimes called a bed of nails; a representation is shown in
Figure 4.23. The Fourier transform of the bed of nails is another bed of nails with spacing
equal to the inverse of the original bed of nails spacing.

The Fourier transform of the cosine in Figure 4.24a is a pair of delta functions at +1/p
from the origin, as shown in Figure 4.24b.

4.8 Image System Response

To prevent aliasing in an image the spatial frequency content has to be limited prior to
sampling. This means the optical system has to control the spatial frequency content. The
analysis of the optical system is based on Figure 4.25. The top half of Figure 4.25 repre-
sents the capture process in the spatial domain. The bottom half represents the frequency
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FIGURE 4.25

Capture in (top) the spatial domain and (bottom) the frequency domain.

domain in one dimension. The picture in the top of Figure 4.25a is the original object. The
frequency spectrum of the original object is shown in the bottom of the figure. The top
portion of Figure 4.25b shows a representation of the lens and its point spread function, an
Airy disk. The bottom portion shows the lens MTF — the modulus of the Fourier trans-
form of the lens point spread function. The rectangle shown in Figure 4.25c represents a
four-spot antialiasing filter. In one dimension the MTF of the antialiasing filter is a cosine
with negative values reflected across the horizontal axis. The first zero is at the Nyquist
frequency, 1/(2p). The square shown in Figure 4.25d is a representation of the pixel active
area. The MTF, shown in the bottom (the modulus of the Fourier transform), is a sinc func-
tion. If the pixel active area is one pixel pitch wide the MTF goes to zero at the sampling
frequency. The image shown in Figure 4.25¢ is the result of convolving the image with the
component point spread functions. The graph in the bottom of the figure is the result of
cascading the MTFs for all of the point spread functions (multiplicative combination). This
procedure describes the optical processing applied before the image is sampled.

Figure 4.26 represents sampling. It is also divided in half — the left represents the spatial
domain and the right represents the frequency domain. Only one scan line will be included
in this discussion. The graph shown in Figure 4.26a is the profile of a line of pixels; the
frequency spectrum is shown in the bottom of the figure. The graph shown in Figure 4.26b
is the same line of pixels that has been convolved with the combined point spread functions
as described by the capture process in Figure 4.25. The frequency spectrum of the line is
shown in the bottom of Figure 4.26b. The function in the top of Figure 4.26¢ is a comb,
and in the bottom is the corresponding Fourier transform, another comb with the inverse
pitch. Figure 4.26d shows a representation of how the line is sampled; the profile on the
top of the figure is multiplied by the comb from Figure 4.26¢ to produce the sampled

A
(a) (b) (© (d) (e)

FIGURE 4.26

Sampling in (top) the spatial domain and (bottom) the frequency domain.



122 Single-Sensor Imaging: Methods and Applications for Digital Cameras

(@)
Nyquist frequency

1 /
0.8

0.6 AN

0.4 \\

0.2

0 0.25 0.5 0.75 1
(b)

FIGURE 4.27

(a) Replicated spectrum, (b) mirrored spectrum.

image on the top of Figure 4.26e. In the frequency domain, the frequency spectrum in
Figure 4.26b is convolved with the comb to produce the repeating frequency spectrum
shown in the bottom of Figure 4.26e. If the image spatial frequencies are above the Nyquist
frequency, the repeating spectrums overlap the baseband and the high spatial frequency
image is aliased to a low-frequency image. The dark vertical bars in Figure 4.27a are at
the Nyquist frequency. The Nyquist frequency is also called the fold frequency because the
overlap of the replicated spectrum is identical to the baseband spectrum mirrored across
the Nyquist frequency (Figure 4.27b). The grey section of the curve in Figure 4.27a is the
replicated spectrum that actually produced the aliased content.

Converting the sampled image back into an analog representation is called reconstruction
or desampling. This is the last, and usually overlooked, step in the display of a sampled im-
age. An artifact that looks similar to aliasing results without reconstruction. Reconstruction
is treated in more detail in Section 4.9.

4.8.1 System Modulation Transfer Function

Most of the analysis of aliasing involves capture. Scene frequency content above the
Nyquist frequency has to be suppressed prior to sampling in order to prevent aliasing.
Figure 4.25 shows that the lens MTF, the antialiasing filter MTF (AAfilterMTF) and the
pixel MTF have to be cascaded to analyze the MTF prior to sampling. According to

MTFcapture = MTFens - MTFE g4 filter * MTFpixel (4 10)

the lens MTF, antialiasing filter MTF, and pixel MTF are multiplied together at each spatial
frequency to produce the capture MTF.
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The lens MTF can be evaluated using

MTFis(0) = = (9 —cos(9) sin(9)) (.11

o (r,s) = arccos (AN\/ r? +s2> (4.12)

where r is spatial frequency on the horizontal axis, s is spatial frequency on the vertical axis,
N denotes lens f/#, A is wavelength in the same units as r and s, and ¢ is an intermediate
variable. This is the MTF for a perfectly designed and manufactured lens. The measured
lens MTF can be substituted for this MTF if it is available, or additional terms can be added
to this expression to account for field angle and defocus (Reference [5], p. 378).

The MTF of a standard four-spot antialiasing filter is next. The first zero of the filter
MTF is at the Nyquist frequency if the spot pitch is equal to the pixel pitch. The MTF of
the four-spot filter is a 2D cosine that goes to zero at 1/(spot pitch). This is not difficult to
evaluate but a more general solution for any number of spots uses the properties of the delta
function. Complex variable math is required, but spreadsheet programs and math programs
that handle complex variables are common and make a more general solution fairly easy.

As shown in Equation 4.9, the Fourier transform of a delta function is an exponential.
Thus, the Fourier transform of the four-spot filter is the sum (average) of four exponentials:

F (fourspot(x,y)) — %(efﬂn'(aoﬂrbos) _i_eijn'(alrerls)

_'_efj27r(a2r+b2s) _‘_efj27r(a3r+b3s)) (4.13)

The MTF is the modulus of the Fourier transform:

MTF 4 fitrer = \/ Real® + Imaginary? (4.14)

The MTF of a filter with any number of spots uses the same technique, except exponentials
corresponding to each of the spots are summed (averaged). If possible, the spots should be
placed symmetrically around the origin to avoid phase terms.

The pixel aperture also affects the system MTF. The MTF of the pixel aperture is a 2D
sinc function (Equation 4.7) with the first zero at a frequency of (1/a) on the horizontal axis
where a is the width of the pixel on the x axis. Similarly, the first zero on the vertical axis
is at 1/b. The area of the standard form of the rect function becomes the peak value of the
Fourier transform. The point spread function has to be scaled by 1/a so it has an area of
one. The MTF will then peak at 1.0. Alternatively, the sinc function can be scaled by 1/a
so the peak is 1.0:

1 sin(mwar) sin(mbs
MTFpixel = ; ’ ( ) : ( )

4.15
b Tr s ( )

Figure 4.28 is an example of an MTF cascade. In this case, the MTF is only analyzed
on one axis. The actual system spatial frequencies are used because the lens MTF is based
on lens parameters; these cannot be scaled to the sampling frequency unless a particular
sampling frequency is chosen. The imager in the example has a two mm pixel pitch, the
lens is set at f/4 and the antialiasing filter is a four spot filter with a spot separation equal to
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FIGURE 4.28

Cascade system response: (a) lens MTF, (b) filter MTF, (c) pixel MTF, (d) system MTF.

the pixel pitch. The lens MTF shown in Figure 4.28a is calculated using Equation 4.11. The
antialiasing filter MTF response shown in Figure 4.28b is calculated using Equation 4.13.
The pixel MTF shown in Figure 4.28c¢ is calculated using Equation 4.15. Finally, the system
MTF shown in Figure 4.28d is the result of multiplying the three component MTFs, spatial
frequency by spatial frequency. Notice the blur filter MTF goes to zero at the Nyquist
frequency for the sensor, 250 cycles per mm. The system MTF past the Nyquist frequency
is suppressed by the pixel MTF and the lens MTF.

The area under the curve beyond the Nyquist frequency can be used as a merit function
to optimize system performance; the minimum area provides the best performance. If
the analysis is done in 2 dimensions the weighted volume beyond Nyquist can be used to
optimize system performance. Weighting is required because the volume is not a linear
function of radius. A weighting function can also be used to give more influence to spatial
frequencies that are more visible to the eye.

4.9 Reconstruction

In general, a sampled image has to be resampled for display. If the display has enough
samples it can emulate a nonsampled display. The process of converting a sampled image
to a continuous image is called reconstruction or desampling [8]. Without reconstruction,
an artifact, sometimes called interpolation error, may appear. The artifact is a variation in
modulation that occurs at spatial frequencies below the Nyquist frequency.
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Sampled sine wave, ten cycles and twenty-two samples.
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FIGURE 4.30

Reconstruction: (a-c) spatial domain, (e-f) frequency domain.

To illustrate the problem, a ten-cycle sine wave is shown in Figure 4.29. Samples are
taken at the evenly spaced dark squares. The output image is displayed by drawing a
smooth curve through the samples. Notice the amplitude is high when the peak and valley
samples are in phase with the sampled points but the amplitude goes down when the peaks
and valleys are out of phase with the sampled points. The minimum amplitude occurs when
two samples are split across a peak or valley.

The modulation envelope is caused by the replicated versions of the image spatial fre-
quency content. Multiplying the image frequency spectrum by a rect (Figure 4.30d) as
wide as the first order spectrum will eliminate the replicas (Figure 4.30f). This can be ac-
complished in the spatial domain by convolving the image with a 2D sinc as shown in one
dimension in Figure 4.30a. The first zero of the sinc function is at 1/p where p is the capture
sampling pitch. The convolution is a continuous function so it reconstructs an analog im-
age. The low modulation sections of the sampled image are boosted in the convolution by
modulation at the tails of the sinc function. The reconstructed sine wave at Figure 4.31c is
an analog reproduction of the original image. In practice, the convolution is only evaluated
at the points required for the displayed image.

Computational speed is an issue with this technique because the sinc is infinitely wide.
This can be handled, with some image quality penalty, by windowing with suitable func-
tions (e.g., Hamming, Hann, etc.). The operation is still computationally expensive al-
though the 2D sinc function is separable, so a 1D sinc can be applied to the rows and then
to the columns. This reduces the amount of computer arithmetic required to reconstruct a
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Reconstruction.

sampled image. Finally, the image has to be rendered for display. After reconstruction the
modulation envelope is suppressed. Resampling for the display will create a new modula-
tion envelope if the image is not low pass filtered based on the display resolution.

The number of display pixels required depends on how much interpolation error is ac-
ceptable. The display pixel count required can be determined from Figure 4.32, a graph
of modulation due to interpolation error. It is assumed the sine wavelength is not an even
multiple of the number of pixels so the phase of the samples will precess from a sample
at a peak or valley to samples split evenly across a peak or valley. Figure 4.33 shows the
origin of this graph; at some point the sine wave will be sampled and displayed at a value
of 1 or —1 (peak or valley) and at some other point the samples will be split across the peak
or valley. At 1/2 cycle per display pixel, the sine wave envelope can go from £1 at the
peak and valley samples to zero when the samples are split across the peak or valley. At 1/4
cycle per display pixel the sine only drops to 70% when the samples are split across a sine
wave peak so the modulation envelope is reduced to 30%. At 1/6 cycle per display pixel,
the modulation is reduced to approximately 10%. To reduce the modulation envelope to a
particular value the reconstructed image can be low pass filtered to limit spatial frequencies
to a particular number of cycles per display pixel or a higher resolution display can be used
if reducing the displayed resolution is not an option.
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FIGURE 4.32

Modulation based on interpolation error.
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Determine envelope modulation.

4.10 Construction

The birefringent antialiasing filter is the most common antialiasing filter and the four spot
square pattern is the most common pattern. An example of the four spot square pattern is
shown on the right side of Figure 4.10c. The single spot shown the left side of Figure 4.10c
is a representation of the point spread function produced by a lens from an object point.
The conventional antialiasing filter design makes this into four spots separated by the pixel
pitch. To create this pattern requires three birefringent plates cemented together. The usual
material is quartz but lithium niobate and calcite have also been used.

Figure 4.34a is an example of the raw birefringent material, cultured crystalline quartz.
This particular piece is an optical half section. There are less expensive forms used in the
electronics industry that can be used for small filters.

The index of refraction of this material is dependent on the polarization and direction
of travel through the crystal. If a spark could be set off inside the crystal, the light would
radiate from the spark as shown in Figure 4.35a. Some of the rays, depending on the po-

(a) (b)

FIGURE 4.34
(a) Cultured quartz bar. (b) Cut crystal.
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FIGURE 4.35
The E and O rays in: (a) birefringent crystal, (b) crystal cut at 45 degrees to the optical axis.

larization axis, travel at the same speed in all directions. These rays are called the ordinary
or O rays [9], [10]. The speed of the rest of the rays depends upon direction in the crys-
tal. These rays are called the extraordinary or E rays. The E and O rays are orthogonally
polarized. Both rays travel through the quartz at the same speed on one axis called the
optical axis. The maximum speed difference is on the orthogonal axis. If the crystal is cut
at 45 degrees to the optical axis (Figure 4.35b) an incident beam will separate into £ and
O rays. The rays separate at 5.8 micrometers per millimeter of material. A crystal that has
been cut at 45 degrees to the optical axis is shown in Figure 4.34b. The optical axis, Z, is
perpendicular to the base. A ray incident on a slice of this crystal is shown in Figure 4.10a,
illustrating how the ray splits into an ordinary ray and an extraordinary ray. The two rays
are separated but parallel to each other when they leave the crystal. Figure 4.10b represents
the slice of Figure 4.10a with the outline of a plate that will be included in an antialiasing
filter. The line with two circles represents the projection of the optical axis in the plane of
the plate. In this case the optical axis is at 45 degrees to the edge of the plate in addition to
a tilt of 45 degrees in and out of the page.
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FIGURE 4.36

Four-spot filter construction.
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FIGURE 4.37
(a) Pleat filter. (b) Phase-noise filter.

To build a square pattern filter, three plates are cut with different angles of rotation be-
tween the edge of the plate and the projection of the optical axis. The plates are cemented
together to produce a filter. A representation of the three plates in Figure 4.36 shows the
angle of the edge of the plate to the projection of the optical axis and the resulting spot
patterns. The line through the spots indicates the polarization of the spots. In practice the
plate thickness is chosen on the basis of the pixel pitch but for the purpose of illustration
the first plate is chosen to be one millimeter thick and the remaining plates are chosen to
produce a square pattern. Notice the first plate produces two spots. It takes two steps to
copy these spots and make a square pattern. The next plate is cut 45 degrees to the optical
axis. At 45 degrees, the spots from the first plate have equal 45 degree components as seen
from the second plate, so both spots are doubled by the second plate. Notice the third plate
does not produce additional spots because its optical axis is 90 degrees to the second plate
optical axis. The spots on the right do not move because they pass through as the ordinary
ray, but the spots on the left are shifted [11].

There is an alternative design for this filter that uses a retarder for the middle plate. The
retarder is still made out of quartz but it is cut differently. It effectively depolarizes the light
that reaches the third plate, so the third plate replicates the first two spots to create a square
pattern. There are other antialiasing filter types that use refraction or diffraction to reduce
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FIGURE 4.38
Eight-spot filter.
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Comparison of different filters.

the high frequency content of an image. Figure 4.37a is a pleated filter, which produces a
four-spot pattern [12]. This filter should be co-optimized with the lens. Figure 4.37b is a
phase-noise filter. It has different size spots with a thickness on the order of the wavelength
of light. The spots change the wave front entering the lens to increase the size of the point
spread function and reduce the image high-frequency content [13], [14]. It is possible to
make this filter wavelength dependent so the point spread function can be adjusted to match
the color channel Nyquist domain.

It is possible to build an eight-spot and a seven-spot birefringent filter with three plates.
The details of an eight-spot filter are shown in Figure 4.38. Figure 4.39 shows a comparison
of the MTF of a square pattern filter, four-, and eight-spot filter. The filter point spread
functions are chosen to have a zero at a half cycle per sample. Notice that the four-spot
filter maintains MTF below the Nyquist frequency better than the other filters, but the MTF
suppression past Nyquist is not as good as the other filters. The eight-spot filter starts to fill
in the four-spot filter, so the eight-spot performance has some of the attributes of the four-
spot filter and some of the attributes of a filter with a square pattern point spread function.
In the spatial domain, the eight-spot filter pattern is taller than it is wide, so the X-axis MTF
is different than the Y-axis MTF. The four-spot filter works well when the lens and pixel
aperture control the MTF past the Nyquist frequency. If the antialiasing filter has to control
the MTF past Nyquist, one of the other patterns may work better.

4.11 Testing

Antialiasing filters can be tested with a point source, a good quality photographic objec-
tive, and a microscope. The photographic objective is used to image a point source. The
image-forming beam passes through the antialiasing filter and the resulting image is viewed
with a microscope (Figure 4.40). If the antialiasing filter is a four-spot birefringent filter,
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Viewing antialiasing point spread function.

the image will be four copies of the lens point spread function in a square pattern. The lens
point spread function has to be small relative to the size of the filter pattern or the image
will just be a square patch of light.

There are a number of issues with this technique. When cameras had six or twelve
micrometer pixels, this technique was easy to set up without much attention to detail but
current consumer cameras are rapidly moving toward two micrometer pixels or less. This
pixel size is pushing the limits of optical microscopes and photographic objectives. To
image two micrometer pixels, the objective has to be diffraction limited at {f/2 or less. The
point source has to fill the entrance pupil of the lens or the lens point spread function will be
larger because the lens is effectively operating at a smaller aperture. Finally, the microscope
objective has to be aligned carefully and the NA has to be large enough to accept the f/2
beam.

If the antialiasing filter is not available to test separately, or if a system test is required,
a circular chirp pattern or a zone plate can be used to analyze the aliasing potential of a
camera or other digital imaging system. The spatial frequency of a circular chirp increases
linearly with radius from the center of the pattern. The equation is:

u= (cos(2mg*) +1) /2 (4.16)

where u is the reflectance or transmission of the chirp and ¢ is the radius from the center of
the chirp.

A chirp pattern is illustrated in Figure 4.41a. All of the following chirp images are
simulated captures that are processed as if they were camera captures. Figure 4.41b is a
red or blue channel chirp pattern from a Bayer CFA that was interpolated using bilinear
interpolation. Notice the aliasing at the Nyquist frequency and the pronounced aliasing
at the sampling frequency. Figure 4.41c shows an interpolated green channel without an
antialiasing filter. Figure 4.41d is an interpolated red or blue channel with an antialiasing
filter. The improvement with the filter is clear. Figure 4.41e and Figure 4.41f show the
results of adaptive interpolation. In this case, the red or blue channel does not look as good
as the bilinear interpolation version because the color errors are not apparent in the black
and white image. The green channel is very clearly better using adaptive interpolation.
To show the image quality improvement with adaptive interpolation compared to bilinear
interpolation, the images are compared in Lab color space (Figure 4.42). Lab is an opponent
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®
FIGURE 4.41

Experimentation using a chirp pattern: (a) original image, (b) red or blue channel interpolated from Bayer pat-
tern without antialiasing filter, (c) green channel interpolated from Bayer pattern without antialiasing filter, (d)
red or blue channel interpolated from Bayer pattern with antialiasing filter, (e) red or blue channel interpolated
from Bayer pattern with antialiasing filter and adaptive interpolation, and (f) green channel interpolated from
Bayer pattern with antialiasing filter and adaptive interpolation.
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Interpolation of a chirp pattern image in Lab space: (a-c) adaptive interpolation, (d-f) bilinear interpolation;
(a,d) L channel, (b,e) a channel, (c,f) b channel.
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FIGURE 4.42

color space; negative values of a represent green and positive values represent magenta
whereas negative values of b represent blue and positive values represent yellow. The a and
b channels are both zero for gray images. As illustrated, the a and b images are scaled to
all positive values between zero and 255. The image value 128 corresponds to a or b equal
to zero. Areas darker or lighter than 128 indicate more color content. Notice the images
with adaptive interpolation have much less color detail. This indicates a much lower aliased
color level in the adaptively interpolated image.

4.12 Conclusions

Analysis of antialiasing filter performance must include all capture system parameters,
particularly the pixel aperture size, lens performance, and interpolation technique. Ideally
the antialiasing filter and the interpolation technique should be co-optimized to maximize
system MTF below the Nyquist frequency and minimize system MTF above the Nyquist
frequency.

Antialiasing filters have been in electronic and digital cameras for over forty years. A
good compromise has been reached between reduced MTF below the Nyquist frequency
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and reduced aliasing because of scene content above the Nyquist frequency. Reducing the
lens MTF has always been an attractive alternative to the expense of an antialiasing filter,
but variation in lens MTF with f/number and focus makes it difficult to achieve consistent
antialiasing with this alternative. Some consumer cameras with pixel sizes of two microm-
eters or less are not including an antialiasing filter because the lens MTF is low enough
beyond the Nyquist frequency to suppress aliasing. Pixel size is still being driven lower
although the inherent noise due to small pixels may stop this trend. If pixel size drops to
one micrometer and lens f/numbers remain at about f/3 camera systems certainly will not
need an antialiasing filter. At this pixel pitch even a diffraction limited lens does not have a
high enough MTF at the Nyquist frequency to produce aliasing.
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5.1 Introduction

Owing to the growing ubiquity of digital image acquisition and display, several factors
must be considered when developing systems to meet future color image processing needs,
including improved quality, increased throughput, and greater cost-effectiveness [1], [2],
[3]. In consumer still-camera and video applications, color images are typically obtained
via a spatial subsampling procedure implemented as a color filter array (CFA), a physical
construction whereby only a single component of the color space is measured at each pixel
location [4], [5], [6], [7]. Substantial work in both industry as well as academia has been
dedicated to postprocessing this acquired raw image data as part of the so-called image
processing pipeline, including in particular the canonical demosaicking task of reconstruct-
ing a full color image from the spatially subsampled and incomplete data acquired using
a CFA [8], [9], [10], [11], [12], [13]. However, as we detail in this chapter, the inherent
shortcomings of contemporary CFA designs mean that subsequent processing steps often
yield diminishing returns in terms of image quality. For example, though distortion may be
masked to some extent by motion blur and compression, the loss of image quality resulting
from all but the most computationally expensive state-of-the-art methods is unambiguously
apparent to the practiced eye. Refer to Chapters 1 and 3 for additional information on
single-sensor imaging fundamentals.

137
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As the CFA represents one of the first steps in the image acquisition pipeline, it largely
determines the maximal resolution and computational efficiencies achievable by subse-
quent processing schemes. Here we show that the attainable spatial resolution yielded by a
particular choice of CFA is quantifiable, and propose new CFA designs to maximize it [14],
[15]. In contrast to the majority of the demosaicking literature, we explicitly consider the
interplay between CFA design and properties of typical image data, and its implications
for spatial reconstruction quality. Formally, we pose the CFA design problem as simulta-
neously maximizing the allowable spatio-spectral support of luminance and chrominance
channels, subject to a partitioning requirement in the Fourier representation of the sensor
data. This classical aliasing-free condition preserves the integrity of the color image data
and thereby guarantees exact reconstruction when demosaicking is implemented as demod-
ulation (demultiplexing in frequency).

Surprisingly, from this perspective we can show the suboptimality of CFA designs based
on pure tristimulus values [15]—a standard design approach long taken by industry, par-
ticularly as manifested by the popular Bayer pattern [4]. Such designs are less resilient to
spatial aliasing as image resolution increases, requiring both stronger assumptions about
the image data as well as more computationally demanding nonlinear demosaicking meth-
ods to avoid reconstruction artifacts. Here our interest lies in quantifying the trade-offs
between performance and complexity for different classes of CFA design; we consider the
purely linear reconstruction of typical images as an indication of baseline performance, and
interpret the resultant degree of aliasing as providing a measure of the maximally attainable
spatio-spectral resolution.

As an alternative to existing CFA patterns, we provide a constructive method to gen-
erate feasible CFA designs that exhibit robustness to prior assumptions on color channel
bandlimitedness and yield high performance while implying only low complexity for sub-
sequent processing steps in the imaging pipeline. Because our emphasis is on the effi-
ciencies of the overall color image acquisition pipeline, we omit an explicit comparison of
demosaicking strategies. However, our analysis yields a general class of linear demosaick-
ing methods that provide state-of-the-art performance and enjoy complexity comparable
to simple bilinear interpolation. In addition, our proposed CFA designs are also designed
for increased noise robustness: the color filters themselves are panchromatic, alleviating
difficulties in low-light conditions, and the linear reconstruction methods we propose can
also be expected to enable more tractable noise modelling [15].

The remainder of this chapter is organized as follows. We begin in Section 5.2 by ex-
amining the spatio-spectral properties of typical CFA designs in the Fourier domain, and
discuss their susceptibility to aliasing. We propose in Section 5.3 a constructive method to
specify a physically realizable CFA pattern in terms of its spatio-spectral properties. The
resultant CFA designs admit fast, optimal linear reconstruction schemes, which we outline
in Section 5.4. In Section 5.5 we give several explicit examples of these new patterns,
and provide empirical evaluations on standard color image test sets. We summarize and
conclude with a discussion in Section 5.6.
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5.2 Spatio-Spectral Analysis of Existing Patterns

In this section, the spatio-spectral properties of the sampling induced by existing CFA
patterns are analyzed. In single-sensor cameras, the pixel sensor at each spatial location
is equipped with a color filter, a physical device whose pigments absorb a portion of the
electro-magnetic wave in the visible spectrum while passing the rest to the photosensitive
element beneath this filter. The measured value at each location is therefore an inner prod-
uct resulting from a spatio-temporal integration of the incident light over each pixel’s phys-
ical area and exposure time, taken with respect to the corresponding color filter’s spectral
response. This is similar to the acquisition process in the retina, where each cone measures
the intensity of the light with respect to its spectrally-shifted response [4], [5], [6], [7]. Be-
cause the spectral response functions of the cones can be taken to span a three-dimensional
space, and cone and sensor measurements are largely proportional to the intensity of the
light (i.e., linear), the observed light can be uniquely represented (up to linear transforma-
tion) by a color triple. We therefore adopt the standard convention and identify these filters
by their color names such as red, green, and blue—though these may not be synonymous
with perceived color, which is a function of the environmental illuminant [1]. As the goal
of this chapter is the identification and optimization of relevant objective metrics, rather
than subjective metrics related to perception, we make no further attempt to elaborate on
the issues of color science.

5.2.1 Color Filter Arrays

Here we begin with the Fourier analysis of the spatio-spectral properties of the CFA
patterns [10], [13]. This spatially global perspective is a logical starting point for a number
of reasons (a spatially local perspective is provided in the next section). First, color filter
arrays are physical constructions that are fixed prior to image acquisition, and therefore not
adapted to local image properties. Second, color filter arrays typically comprise a repetitive
tiling of the image plane formed by the union of alternating color samples.' As we describe
below, the global spatial periodicity of CFA sampling patterns may be understood in terms
of lattices, with a so-called dual or reciprocal lattice determining the resultant spectral
periodicity under Fourier transform. Finally, the linear reconstruction methods we consider
in the interest of evaluating computation-quality trade-offs preclude adaptation to local
statistics of the image under consideration.

To motivate our analysis, let us first consider the interplay between color channels of
the acquired image. Let x(n) = [x,(n),x,(n),x,(n)]" denote the RGB tristimulus value
of the desired color image at pixel location n € Z?. Define ¢(n) = [c,(n),cy(n),cy(n)]"
as the corresponding CFA color combination, so that the measured sensor value y(n) at
location n can be expressed as the inner product y(n) = ¢(n)?x(n). For the moment, we
restrict our attention to ¢(n) € {[1,0,0]7,[0,1,0]7,[0,0,1]7} as a model for CFA schemes

TPseudo-random CFA patterns have also been considered in the past [7]. Despite their potential theoretical
advantages, we omit them from our discussion, as the corresponding reconstruction schemes incur much greater
computational expense.
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(a) (®) (© (d (e)
FIGURE 5.1

Log-magnitude spectra of a typical color image (i.e., image flower here) illustrating the lowpass nature of
difference channels x, and xg relative to x, xg, and x;. Individual spectra correspond to: (a) red channel, (b)

green channel, (c) blue channel, (d) difference x4, and (e) difference xg.

that multiplex color samples; note that ¢, + ¢ + ¢, = 1. Each pixel sensor thus measures

xr(n) Xq(n)
y(n) =c(n) x(n) = [c,(n) cg(n) cp(n)] |x4(n) | = [c,(n) 1 cp(n)] |xg(m) |, (5.1)
xp(n) xp(n)

where xq = x, —x; and xg = x;, — x, are difference channels. As noted in References [10]
and [13], this {xq,x,,xg} representation offers an advantage over the original {x,,x,,x,}
formulation; the difference channels x4 and xg serve as a proxy for chrominance compo-
nents, which enjoy rapid decay in the spatial frequency domain, whereas x, can be taken to
represent the image luminance component, which embodies edge and texture information.
In fact, the Pearson correlation coefficient measured between the high-frequency compo-
nents of the color channels {x.,x,,x;} is typically larger than 0.9 [8]—and because of
this high degree of redundancy, it is often assumed that x4 and xg are lowpass relative to
{x,Xg,Xp}; see Figure 5.1.

The key observation to be gleaned from Equation 5.1 is that y constitutes a sum of the
green channel x, and the subsampled difference images ¢, - xo and cp - xg. In order to
understand the limitations of existing color filter array designs, it is helpful to consider
the geometric and algebraic structure of subsampling patterns ¢, and c; through the notion
of point lattices [15]. To this end, we say a (nonsingular) sampling matrix M € R>*?
generates a lattice MZ?. Certain sampling patterns ¢, and ¢, can in turn be rewritten as
two-dimensional pulse trains using lattice notation:

com= Y  Sm-n)  om= Y  Sm-n), (52
n()E{mr-‘erZZ} l’l()E{mh-‘rMbZz}

where M, M}, are 2 x 2 sampling matrices; m,,m;, € Z?* are termed coset vectors; and & (n)
is the Kronecker delta function.” Lattices themselves admit the notion of a Fourier trans-
form as specified by a dual lattice 2zM T Z?; if we define Y (w) as the Fourier transform
(in angular frequency w) of sensor data y(n), it follows from Equations 5.1 and 5.2 that

2In fact, Equation 5.2 represents a special case in which sampling patterns ¢, and ¢}, are each themselves
lattices. More generally, they are defined in terms of unions of lattice cosets [15]; however, this does not
change the fundamentals of our present discussion.
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FIGURE 5.2 (See color insert.)

Examples of existing CFAs: (a) Bayer [4], (b) Yamanaka [5], (c) Lukac [7], (d) vertical stripes [7], (e) diagonal
stripes [7], (f) modified Bayer [7], (g) cyan-magenta-yellow, (h) Kodak I [16], (i) Kodak II [16], (j) Ko-
dak ITI [16].

Y (w) over the region [—m, ) X [—7,7) is given by

Y (w) = X(w) + | det(M,)| ! y e MWK (w—A,)
Ne{2aM T 720[—r,7)2}
+| det(M,)] ! y eI g (w — Ap). (5.3)
Me{2nM-T720[—x,x)?}

The key point of Equation 5.3 is that these dual lattices specify the carrier frequencies
{Ar, Ap} about which spectral copies of the difference channels xq and xg are replicated
in the Fourier domain. The popular Bayer CFA [4], for instance, can be specified as M, =
My, =2I,m,=1[0,0]", and m;, = [1, 1] —implying dual lattices equal to 7£Z2, with nonzero
{\, Ap} given by [—7,0]T, [0, —7x]7, and [-7, —7]T.

Examples of several existing CFAs ¢(n) and the corresponding spectra Y (w) of typical
sensor data are illustrated in Figure 5.2 and Figure 5.3, respectively; note that aliasing
occurs when, for nonzero A, or A, the spectral supports of X,(w) and Xq(w — A,) or
Xg(w — Ap) overlap.

Despite its widespread use, the spectral periodization about [—7,0]” and [0, —7x]7 in-
duced by the Bayer CFA severely limits allowable spectral bandwidth for X. In fact, all
CFAs depicted in Figure 5.2 are suboptimal in at least one of two ways: First, as shown
in Figure 5.3a to Figure 5.3d and Figure 5.3g to Figure 5.3j, spectral copies of the differ-
ence channels appear along the horizontal and/or vertical axes of the Fourier representation,
leaving the baseband channel X, vulnerable to the horizontal and vertical features that fre-
quently dominate natural images [17]. Second, as shown in Figure 5.3d to Figure 5.3f and
Figure 5.3h to Figure 5.3j, maximal separation between Xg(w) and X, (w — ), Xg(w —Ap)
is precluded unless all nonzero carrier frequencies { A\, A, } lie elsewhere along the perime-
ter of [, ) X [—7, ).
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FIGURE 5.3 (See color insert.)

Log-magnitude spectra of a typical color image (i.e., image flower here) sampled with CFAs corresponding
to Figure 5.2. Color coding is used to distinguish different components, with the x¢(r) component shown in
green, xg(n) = x,(n) — xg(n) in red, and xg(n) = xp(n) — xg(n) in blue. Individual spectra correspond to:
(a) Bayer [4], (b) Yamanaka [5], (c) Lukac [7], (d) vertical stripes [7], (e) diagonal stripes [7], (f) modified
Bayer [7], (g) cyan-magenta-yellow, (h) Kodak I [16], (i) Kodak II [16], (j) Kodak III [16].

In fact, these two conditions can be used to formulate a precise statement of CFA subop-
timality [15]: any CFA design of the form ¢(n) € {[1,0,0]7,[0,1,0]7,[0,0,1]7} that places
all spectral replicates on the perimeter of [—7, ) x [—7, ), while avoiding [—7,0]7 and
[0, —7]T, can only support two distinct colors. While we show in Section 5.3 how panchro-
matic designs can overcome this restriction, those that have emerged to date (including
four-color CFAs) fail to satisfy the above two conditions.

5.2.2 Aliased Sensor Data and Demosaicking

Because the suboptimal CFA designs detailed above are prone to aliasing, linear recon-
struction methods no longer suffice as the spectral support of X,(w) increases. Recon-
struction is then an ill-posed problem, meaning that stronger assumptions about the signal
are needed to recover the full-color image from aliased sensor data. To this end, the most
common approach is to invoke the principle that local image features are sparse in some
canonical representation. One explicit form of this principle is directionality—the notion
that image features are assumed to be oriented in one direction, and thus that the energy of
the corresponding local Fourier coefficients is concentrated accordingly. If X, is sparse in
the direction parallel to an image feature orientation, then aliasing can in turn be avoided;
this principle is exploited either explicitly or implicitly by many state-of-the-art demosaick-
ing methods [9], [10], [11], [12], [13]. In a similar manner, under a transformation that is
local in both space and frequency, the signal energy may be assumed to be compressed
into a few transform coefficients; regularization in the transform domain then helps to re-
cover the full color image [8], [12]. However, demosaicking methods that exploit these
assumptions are usually highly nonlinear and computationally demanding. Indeed, effec-



Spatio-Spectral Sampling and Color Filter Array Design 143

tive detection of image feature orientation (especially under the influence of noise) is an
active area of research, and the determination of local image statistics requires additional
computation. Moreover, subsequent interpolation steps are tightly coupled to estimates of
feature directionality; this type of nonlinearity is effectively a data-driven switching mecha-
nism that is expensive to implement in ASIC or DSP hardware. On the other hand, wavelet-
and filterbank-based methods often employ iterative reconstruction schemes that may not
easily be implemented in portable imaging devices.

The difficulties posed by nonlinear reconstruction methods are especially evident in to-
day’s digital video camera architectures. In order to meet the required frame rate with
limited computational complexity, for example, it is common to implement demosaicking
using methods such as bilinear interpolation that fail to yield satisfactory results. Other pro-
cessing schemes may introduce pixel flickering artifacts, for instance, interframe oscilla-
tion or toggling of pixel colors caused by the susceptibility of edge-detection techniques to
noise. Finally, nonlinear demosaicking methods are themselves subject to perturbations due
to noise. Although simultaneous image denoising and interpolation methods have emerged
in recent years (see, for example, Reference [12]), the difficulties of characterizing noise
statistics after nonlinear demosaicking often render stand-alone image denoising methods
ineffective. In contrast, the statistics of noise that undergoes only linear processing remain
highly tractable, suggesting that a combination of denoising and demosaicking may indeed
be possible.

5.3 Spatio-Spectral Color Filter Array Design

By simultaneously considering both the spectral support of luminance and chrominance
components, and the spatial sampling requirements of the image acquisition process, we
may conceive of a new paradigm for designing CFAs. With robustness to aliasing achieved
via ensuring that spectral replicates lie along the perimeter of the Fourier-domain region
[, ) x [—7, ) while avoiding the values [—7,0]” and [0, —x]” along the horizontal and
vertical axes, our CFA design methodology aims to preserve the integrity of color images
by way of subsampled sensor data. Images acquired in this manner are easily manipulated,
enjoy simple reconstruction schemes, and admit favorable computation-quality trade-offs
with the potential to ease subsequent processing in the imaging pipeline [14], [15].

5.3.1 Frequency-Domain Specification of Color Filter Array Designs

Let 0 < c.(n),ce(n),cp(n) < 1 indicate the CFA projection values at a particular spatial
location, where c,(n),cq(n),cp(n) now assume continuous values and hence represent a
mixture of prototype channels. With the additional constraint that ¢, +c, + ¢, = ¥, it follows
in analogy to Equation 5.1 that
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and we may determine the modulation frequencies of difference channels xq () and xg(n)
by our choice of ¢,(r) and cp(n). Recalling Equation 5.3, we seek choices such that
Fourier transforms of the frequency-modulated difference images Xo (w — A,), Xg(w — Ap)
are maximally separated from the baseband spectrum X, (w).

In the steps outlined below, we first specify candidate carrier frequencies {7;} and corre-
sponding weights s;,; € C for color filters ¢,(n) and ¢, (n). Recalling that for constants v, K
we have that .7 {kc,+ v} (w) = k% ¢,(w) + v&(w), we see that it is possible to manipulate
our candidate color filter values until the realizability condition 0 < c.(n),c,(n),cp(n) <1
is met. This notion leads to the following algorithm for frequency-domain specification of
color filter array designs (with ~ denoting complex conjugation, and Figure 5.4 illustrating
the algorithmic steps):

ALGORITHM 5.1 Frequency-domain color filter array design.
1. Specify initial values {7;,s;,#;}. Set modulation frequencies:

A —F Y 5i8(w+T) +5:8(w— i)
A =F Y 18 (w+ ) + 78 (w— 7).

2. Subtract a constant v, = min e (n), v, =min e (n) (non-negativity):

Wy Dy,

3. Scale by k¥ = (max, et (n)+ cél) (n))~! (convex combination):

c£2) = Kcﬁl), c}(}z) = Kcél).

4. Find green: c,(f) =1- ng) —cg).

5. Scale by y = (max{c\” (n),c{” (n),c,(f) (m)H~ 1

o=y =y, o=y

In the first step, candidate carrier frequencies are determined by taking the inverse Fourier
transform of & (w =+ 7;). The conjugate symmetry in this step guarantees a real-valued color
filter array; in general, however, the resultant design is not physically realizable (points
in Figure 5.4a fall outside of the first quadrant, for example). Constants Vv,,V, are then
subtracted to ensure non-negativity of color filters (Figure 5.4b). A scaling by x and com-
putation of the green component in the next two steps projects candidate values onto the
unit simplex, ensuring convexity and a maximum component value of unity (Figure 5.4c
and Figure 5.4d). Finally, multiplication by Y maximizes the quantum efficiency of the
color filters (Figure 5.4e). The resultant CFA is physically realizable, with observed spec-
tral data Y given by the sum of baseband components and modulated versions of X, and
XBZ

Y () = 7Xe(w) — iV, Xa(w) — 7V, Xs ()
+’}’KZ{SiXa + tiXﬁ}(w + Ti) + {S_iXa —|—t_,-Xﬁ}(w — Ti)-
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FIGURE 54

Color filter array design visualized in Cartesian coordinates (c;, ¢y, ¢g), with the dotted cube representing the
space of physically realizable color filters (0 < c,(n),cg(n),cp(n) < 1). Steps 1 to 5 in Algorithm 5.1 are

shown as (a) to (e), respectively.

This approach enables the specification of CFA design parameters directly in the Fourier
domain, by way of carrier frequencies {7;} and weights {s;,#;}. In doing so, we ensure that
nonzero carrier frequencies lie along the perimeter of [—x,7) X [, ), while avoiding
the values [—7,0]7 and [0, —7]7 as desired.

5.3.2 Analysis and Design Trade-Offs

In this section, some notable features of the above CFA design strategy are considered;
readers are referred to Reference [15] for a thorough analysis of design trade-offs. We first
note that CFA designs resulting from Algorithm 5.1 are panchromatic, with the resultant
filters comprising a mixture of red, green, and blue colors at each spatial location. As color
filters are commonly realized by pigment layers of cyan, magenta, and yellow dyes over
an array of pixel sensors (i.e., subtractive colors) [18], designs for which ¥y > 1 suggest
improved quantum efficiency. Furthermore, it becomes easier to control for sensor satu-
ration, as the relative quantum efficiency at each pixel location is approximately uniform
(¢, +cg+cp =7y). We also note that the space of feasible initialization parameters {7, s;, 1}
corresponding to Algorithm 5.1 is underconstrained, offering flexibility in optimizing the
CFA design according to other desirable characteristics such as demosaicking complexity,
pattern periodicity, resilience to illuminant spectrum, and numerical stability [15].

Our design strategy assumes bandlimitedness of the difference images x4 and xg, and
therefore its robustness hinges on how well this claim holds in various practical situations
(e.g., under changes in illuminant). Even as the bandwidths of the modulated difference
spectra grow, the increased distance between these channels and the baseband component
serves to reduce the risk of aliasing, effectively increasing the spatial resolution of the imag-
ing sensor. Consequently, local interpolation methods are less sensitive to the directionality
of image features, and a linear demosaicking method then suffices for many applications.
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As described earlier, linearization of the demosaicking step is attractive for several rea-
sons: it can be coded more efficiently in DSP chips, it eliminates the temporal toggling
pixel problems in video sequences, it provides a more favorable setup for deblurring, and
it yields more tractable noise and distortion characterizations.

5.4 Linear Demosaicking via Demodulation

In this section, we show that the processing pipeline of a typical digital camera can be
exploited to greatly reduce the complexity of reconstruction methods [14]. Suppose the
conjugate modulation sequences cq(n) = ) (n)~! and cg(n) = CIEO) (n)~! exist;> when
these sequences are orthogonal, the modulated signal can be recovered via a multiplica-
tion by the conjugate carrier frequency followed by a lowpass filter. Assuming mutual
exclusivity of the supports of X¢, X¢, and X in the frequency domain, we expect an exact

reconstruction according to

£(n) 110][1/(yx) 0 0 ho * {cay}
X(n) = [%g(n)| =[010 v,y 1]y w/y hexy |, (5.4)
011 0 0 1/(yx)| Lhp*{cpy}

where * denotes the discrete convolution operator, and the passbands of lowpass filters
ha, hg,hg match the respective bandwidths of the signals x¢, xg, Xg.

Given the mutual exclusivity of the signals xq,xg,xg in the Fourier domain, we assume

A%+ he + cl(jo)hﬁ = 0, where d(n) is again a Kronecker delta function. Using the linear-

ity and modulation properties of convolution, we obtain:
hexy= (86— cgo)ha - Céo)hﬁ) *y
0 0
=y—{”ha} =y —{c; g} =y
0 0
=y =" {hax {eay}} —cy (g * {epy} ).

The demodulation in Equation 5.4 in turn takes the following simplified form:

1107 [1/(yx) 0 0 L0 0 [he*{cay}]
(n)=101 O] [ v./y 1]y vb/y] —cﬁo)(n) 1 —c,(,o)(n) y
011 0 0 1/(yx) 0 0 1 Lhg *{cpy} ]

1/ (<) +vi /v =)y 1y vi/y=c2m)/y T Thex {cay)T

=| vy 1y wy-om))y y
L vr=dVmy 1y vy m)/y) U iepyh

The first term in Equation 5.5 is a 3 x 3 matrix multiplication (a completely pixelwise
operation), whereas the spatial processing component is contained in its second term. In

(5.5)

31n this chapter, we do not discuss cases in which there are zeros; however, the results presented here generalize
easily to such cases via an appropriate multiplicative constant.
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the usual layout of a digital camera architecture, a color conversion module follows im-
mediately, converting the tristimulus output from demosaicking to a standard color space
representation through another 3 x 3 matrix multiplication on a per-pixel basis. The two
cascading matrix multiplication steps can therefore be performed together in tandem, with
the combined matrix computed offline and preloaded into the camera system.

Given sufficient separation of the modulated signals in the frequency domain, crudely de-
signed low-pass filters suffice for the reconstruction task. Suppose we choose to implement
Equation 5.5 using a separable two-dimensional odd-length triangle filter — a linear-phase
filter with a modest cutoff in the frequency domain. Four cascading boxcar filters can be
used to implement a filter of length 2¢g — 1 having the following Z transform, with Z; and
Z, corresponding to delay lines in horizontal and vertical directions, respectively:

1-2z.14 1-z.1 1-274 1-27,1
Ha(2) = Hy(2) = <1—zi-1> (1—21—1> (1—zj—1> (1—Zz—1>' (56)

The computational complexity of the above system is eight adders for i, and hﬁ each.
Moreover, in 4 x 4 repeating CFAs, the carrier frequencies cgo) and céo) are often propor-
tional to sequences of +1’s (and by extension, cq and cg also). In this case, the multiplica-
tion by —1 before addition in Equation 5.6 simply replaces adders with subtracters, which
is trivial to implement. The overall per-pixel complexity of the demodulation demosaick-
ing in Equation 5.5 is therefore comparable to that of bilinear interpolation (16 add/subtract

operations per full pixel), despite its state-of-the-art image quality performance.

5.5 Examples and Analysis

In this section we provide several examples of CFA designs and analyze their perfor-
mance. These designs, shown in Figure 5.5 and detailed in Table 5.1, were generated in
the spirit of Algorithm 5.1 by employing an exhaustive search over a restricted parameter
space {7i,s;,t;} [15]. Though some CFAs in Figure 5.5 have rectangular geometries, we
see that nevertheless every pixel sensor has an equal number of neighboring colors, a con-
dition that helps mitigate cross-talk noise due to leakages of photons and electrons. Their

TABLE 5.1
Example CFA patterns specified in terms of parameter values {7;,s;,}.

pattern i=0 =1 pattern i=0 i=1 pattern i=0 i=1
Ti (7‘-"%) (TL',TC) Ti (ﬂvan) (zTﬂ:vn) Ti (ﬂ,%) (TL',TL')
A reds; 1+4+1j 1 C reds; 1j 1j E reds; 1+4+1j 1
bluer;, 14+1; -1 blue #; 1j —1j blues; 1+1j -1
Ti (7‘-"%) (TL',TL') Ti (77"7%) (ﬂ’-vﬂ’-) Ti (7‘-"%) (TL',TL')
B reds; 1+1j 0 D reds; 3+4j 1 F reds; 1+41j 0

blue #; 0 1 blues;, 3—4j 1 blue #; 0 1




148 Single-Sensor Imaging: Methods and Applications for Digital Cameras

@ N EEEm

HEEEEN

H BB R EE

(@ (b) (©) ()
FIGURE 5.5 (See color insert.)

Proposed CFAs (top) and resultant log-magnitude spectra (bottom) of a typical color image (i.e., image flower
here). Color coding is used as in Figure 5.3 to distinguish components Xy, X, and Xg. Subfigures correspond
to: (a) pattern A, (b) pattern B, (c) pattern C, and (d) pattern D.
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FIGURE 5.6

Spectral sensitivity characteristics (a) of a typical Sony CCD sensor [19], and (b-e) the corresponding pattern
A color filters derived from these characteristics.

designs are given in Table 5.1 as combinations of prototype red, green, and blue filters;
the precise color specifications used in subsequent demosaicking experiments were derived
from a popular Sony CCD quantum efficiency function [19] shown in Figure 5.6a. The
resultant spectral responses, shown in Figure 5.6b, may be implemented using subtractive
color pigments such as cyan, magenta, and yellow.
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Bike image sensor data (top row), with nonlinear and linear reconstruction methods shown for the case of
clean (middle row) and noisy (bottom row) sensor data. Individual images correspond to: (a) original image,
(b) Bayer CFA sampling, (c) pattern A sampling, (d) nonlinear Bayer reconstruction [8], (¢) linear Bayer
reconstruction, (f) linear pattern A reconstruction, (g) noisy nonlinear Bayer reconstruction, (h) noisy linear

Bayer reconstruction, and (i) noisy pattern A linear reconstruction.

In comparing Figure 5.3 and Figure 5.5, we see that in the latter case spectral copies of
xo and xg are placed farther from the Cartesian axes and the origin, thus achieving a better
separation of channels in the Fourier domain. The implications of this design improvement
may be seen in the demosaicking examples of Figure 5.7; while demosaicking performance
is both algorithm- and CFA-dependent, we may consider state-of-the-art methods for de-
mosaicking Bayer CFA data along with the linear reconstruction methodology outlined in
Section 5.4, using the well-known bike test image shown in Figure 5.7a.

To this end, Figure 5.7b and Figure 5.7c show simulated sensor data y(rn) = ¢(n)x(n)
for the bike image x(n), acquired under ¢(n) representing the Bayer CFA and pattern A
of Figure 5.5, respectively. Figure 5.7d to Figure 5.7f show demosaicked images corre-
sponding respectively to a reconstruction of a color image from Bayer CFA data using the
iterative, nonlinear method of Reference [8], the linear demosaicking algorithm of Sec-
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tion 5.4, and the same linear method applied to the pattern A sampled data. This latter
reconstruction is competitive with the nonlinear Bayer reconstruction of Figure 5.7d, and
exhibits significantly reduced zipper artifacts. On the other hand, compared to the purely
linear Bayer demosaicking shown in Figure 5.7e, the linear pattern A reconstruction shows
a significant gain in fidelity for equal hardware resolution and computational cost. Finally,
Figure 5.7g to Figure 5.7i demonstrate its improved resilience to noise, by way of show-
ing the same three reconstructions applied to sensor data corrupted by simulated Poisson
noise. Compared to the reconstructions using Bayer CFA data depicted in Figure 5.7g and
Figure 5.7h, the pattern A linear reconstruction of Figure 5.7i renders contributions from
signal-dependent noise far less noticeable.

5.6 Conclusion

By considering the interplay between color filter arrays and typical images, we have
posed here the CFA design problem as one of simultaneously maximizing the spectral
support of luminance and chrominance channels subject to their mutual exclusivity in the
Fourier domain. From this perspective, current design practices were seen to be suboptimal:
as image resolution increases, existing CFAs are prone to aliasing, linear reconstruction
methods no longer suffice, stronger assumptions must be made about the underlying signal,
and additional computational resources are needed to reconstruct the full-color image.

Key to our design paradigm was the notion that the measurement process, an inner prod-
uct between the color filter array and the image data, induces a modulation in the frequency
domain. To this end, we chose to modulate the chrominance spectra away from the base-
band luminance channel, and in doing so we proposed a constructive method to design
a physically realizable CFA by specifying these modulation frequencies directly. This
method generates panchromatic CFA designs that mitigate aliasing and admit favorable
computation-quality trade-offs. As we have shown, our corresponding linear demosaicking
method yields state-of-the-art performance with an order of complexity comparable to that
of bilinear interpolation.
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6.1 Introduction

In recent years, considerable work has been conducted in multispectral imaging, which
expands color cameras’ capability to capture spectral information at multiple wavelengths
other than visible light. Multispectral images have been widely investigated for their ap-
plications in remote sensing [1], [2] to analyze the landscapes and structures from aircrafts
or satellites. Particularly, differences in spectral signatures among various land covers en-
able the detection and classification of different crops or minerals [3], [4]. Multispectral
imaging has also been widely used in the field of biological microscopy in an effort to
discriminate multiple co-localized fluorescent molecules [5], [6], [7]. Using common mi-
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croscopy methods, the number of molecules that can be detected simultaneously is limited
by both spectral and spatial overlap. These issues can be tackled using spectral informa-
tion which extends the possibilities to distinguish multiple proteins, organelles or functions
within a single cell [8]. In biomedical imaging, one of the potential applications of mul-
tispectral imagery is the detection of breast cancer at its early stage when cancer cells are
still very small in size but show aggressive growth activities which can be picked up by
infrared imaging [9], [10]. Moreover, multispectral imaging is a significant technology for
the acquisition, analysis, and display of accurate color information [11], [12], [13].

Many methods have been used to obtain multispectral imagery [14]. To achieve high
spectral resolution, the following techniques are popularly adopted in existing imaging sys-
tems: 1) imaging spectrometer, which uses an optical dispersing element such as a grating
or prism to split the light into many narrow and adjacent wavelength bands, and the energy
in each band will be measured by a separate detector. Such imaging systems are complex
and expensive. The manufacture of multiple sensor array is also complicated and delicate.
In addition, the data size is limited by the requirements of data storage, transmission, and
processing [15]; 2) filter-based spectral imaging, in which images are taken with a static
camera mounted with a set of discrete filters. The filters are switched by revolving a filter
wheel, then a discrete set of multispectral images can be obtained. However, due to the
changing environment, the acquired images need to be registered before other processing
algorithms can be applied [14]; and 3) the technique of quantum well imaging arrays, which
still needs years of research before maturity [16].

To achieve an efficient solution for multispectral imaging, we study the application of
multispectral filter array (MSFA), a mosaic array of multiple wavelength-specific filters,
which is stimulated by the color filter array (CFA) technique in commercial digital color
cameras [17]. Although considerable work has been conducted in the color domain, to the
best of our knowledge, no attempt has been given to multispectral imaging. To acquire mul-
tispectral information, instead of using multiple detectors at each pixel location to obtain
measurements for different spectral bands, single photo detector covered by an MSFA is
adopted. In this way, a multispectral camera captures a scene such that each photo detector
only captures spectral information at a single band, resulting in a mosaic-like monochrome
image called the mosaicked image. To obtain the full multispectral data, a reconstruction
operation, referred to as MSFA demosaicking, is required to estimate the missing spectral
components at each pixel location. We call the resulted multispectral image the recon-
structed image or the demosaicked image. The system diagram of an MSFA digital camera

i mosaicked :
actual | . image demosaickin Ereco.nstructed
scene ! mosaicking » g —E—P image
i MSFA digital camera ;
FIGURE 6.1

System diagram of an MSFA camera.
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FIGURE 6.2

[lustration of mosaicking and demosaicking process. The light red, green, and blue pixels in the right figure
represent the estimated values.

is shown in Figure 6.1. Figure 6.2 illustrates the mosaicking and demosaicking process
for a row of a color image. It is clear that at each spatial location, only the information
at a single band is measured, and for individual spectral bands, there exist a large number
of missing components across the image plane. Compared to a full multispectral imaging
system, an MSFA camera trades spatial resolution for spectral resolution. The MSFA tech-
nique provides several advantages like low cost, exact registration, compact physical setup
and strong robustness, which have made it very attractive to the industry.

This chapter focuses on the MSFA design methodologies (MSFA mosaicking) and the de-
velopment of effective reconstruction algorithms (MSFA demosaicking). In Section 6.2, we
discuss the underlying design principles starting from a brief review of color filter array and
its biological relevances. Three design criteria for MSFA are then identified and summa-
rized which form the essential building block of this chapter. The gist of this chapter is the
MSFA design approach and the corresponding demosaicking algorithm which are detailed
in Section 6.3 and Section 6.4, respectively. In Section 6.3, we present a binary tree based
method to generate MSFAs for both rectangular and hexagonal tessellations. Given the
number of spectral bands and the probability of appearance (POA) of each band, the algo-
rithm starts from a checkerboard pattern and generates various MSFAs following a binary
tree separation procedure. The demosaicking algorithm addressed in Section 6.4 follows
the same tree in a reverse direction and progressively estimates the missing pixel com-
ponents. Three interrelated processes are involved in the reconstruction algorithm, namely
band selection, pixel selection, and interpolation, which facilitate the exploration of spectral
correlation to achieve better reconstructions than individual demosaicking of each image
plane. In Section 6.5, the performance of a multispectral mosaicking and demosaicking
system is evaluated from two perspectives. We first evaluate the intrinsic properties of
MSFA patterns to see how well the created patterns satisfy the design criteria. We then
assess the entire system by evaluating the performance of reconstructed images in terms
of classification accuracy and root mean square error compared with the full multispectral
data. Finally, Section 6.6 concludes this chapter.

6.2 Mosaicked Filter Array Patterns and Their Design Philosophy

In essence, a multispectral camera is simply a visual system, which can sense spectral
information outside the visual wavelength range as many animal visual systems do. One
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important feature of the human and animal visual systems is that they possess the capability
of instant processing and high resolution of discrimination. Many recent efforts have been
devoted to the emulation of human and animal visual systems to achieve cost-effective,
high-resolution and real-time imaging systems. The technique of CFA is one of the major
achievements following this principle. Due to the unique advantages of the mosaic tech-
nique, the potential application of MSFAs has been studied in References [18] and [19].

Several problems have to be addressed before the MSFA technique becomes a reality.
First, there is a tradeoff between the spatial and spectral resolution as shown in Figure 6.2.
To achieve high spectral resolution, less number of samples within each band can be ac-
quired, resulting in low spatial resolution images; on the other hand, for a given imaging
field, many more detectors have to be integrated on chip to obtain higher spatial resolu-
tion, which would increase the camera cost and complexity. There is yet another concern
we need to address besides the resolution issue. Since the design of MSFA is associated
with a set of selected spectral bands and different targets would possess different sets of
signature spectral bands, the bands that are most effective in discriminating the target from
its background, it appears that a multispectral camera can only be specialized in imaging a
certain type of target which is apparently not cost-effective. Fortunately, ongoing research
in the area of adaptive imaging [20], [21], [22] has proposed potential solutions to this
problem. The Defense Advanced Research Projects Agency (DARPA) has recently devel-
oped an Adaptive Focal Plane Array (AFPA) program [23], in which a high-performance
focal plane array (FPA) is to be developed that is widely tunable on a pixel-by-pixel basis
across the relevant wavebands in the infrared spectrum. With this technology, real-time
reconfiguration of the array can be realized to meet different application requirements in an
ever changing environment.

Two fundamental procedures involved in the MSFA technique are the design of MSFAs
and the demosaicking algorithm. In the color domain, considerable work has been reported
to optimally reconstruct the full color image for the popular Bayer array [24]. However,
studies on the intrinsic properties of the filter array as well as the underlying design prin-
ciples have been very limited [25], [26]. Moreover, the design philosophies of CFAs are
only applicable in the color domain. Its generalization to MSFA in the multispectral do-
main is not straightforward and needs further research. Due to the increased number of
spectral bands, the design of MSFAs as well as the reconstruction of multispectral data is
more complicated. Therefore, the development of a generic algorithm with capability of
generalizing the mosaicking and demosaicking processes of different multispectral appli-
cations is of great importance. In this section, we summarize our study findings in the CFA
technique and its biological relevance, from which we identify three design requirements
for MSFA that are the guidelines for the generic MSFA generation algorithm discussed in
the next section.

6.2.1 Color Filter Arrays

Most digital cameras use a rectangular array of light-sensing elements covered by
wavelength-specific filters to capture spectral information at different bands. By doing so,
only one color component is sensed at each pixel location. The resulting mosaic-like im-
age is then processed using spectral interpolation algorithms to estimate the missing color
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FIGURE 6.3

Examples of CFAs: (a) Bayer array [27], (b) diagonal Bayer array [28], (c) diagonal stripe [28], (d) Sony
RGBE array [29], and (e) spatio-spectral array [26]. Figure 5.2 shows presented CFAs in color.

components. The key idea of using the filter array technique has been demonstrated in
Figure 6.2. Although some expensive cameras use a set of three light-sensing elements or
place three layers of sensors one over the other to produce a high quality image, a single
array of sensors with a color filter array is the simplest solution, and its disadvantages, i.e.,
reduced spatial resolution, will be overcome as it becomes possible to make larger arrays
at higher densities. For a color filter array, the type of filters and the spatial arrangement of
different filters constitute its two basic features.

Regarding the type of filters used, different color bases have been considered [25], [28],
including the tristimulus color basis (RGB, YMC), the mixed primary/complementary color
(MGCY), and various four-color schemes [29]. Due to the complexity issue in the demo-
saicking process and the widely used RGB image format for storage, most existing color
systems utilize the RGB CFAs [25]. In terms of the spatial arrangement of color filters, the
earliest and most popularly used CFA is the Bayer array [27] (shown in Figure 6.3a). How-
ever, the design philosophy was not followed up and extended until several improvements
proposed in References [30], [31], and [32]. Recently, there is a growing research interest
in investigating the interplay between the CFA design and the subsequent demosaicking
process. The studies in this area have shown that the CFA has a great impact on the quality
of reconstructed images besides the demosaicking algorithms [25], [26]. A spatio-spectral
method is proposed in Reference [26] aiming at improving color filter arrays to achieve
enhanced image quality. In Figure 6.3, we illustrate several examples of CFA patterns; for
more discussions on the design of color filter arrays, see Reference [25].

6.2.2 Biological Relevance

The idea of using mosaic filter array instead of multiple photo detectors is stimulated
from the study findings of the human visual system (HVS) as well as many other ani-
mal visual systems. In the human retina, three types of cones with absorbance maxima
in the long-, middle-, and short-wavelength (L, M, and S cones) region are organized into
mosaics that tile the retina [33] as illustrated in Figure 6.4a. Only a single type of pho-
toreceptor samples the image scene at any given location. Several studies [33], [34] have
attempted to analyze the spatial arrangement of the L, M, and S cones. It was suggested
in Reference [35] that the three types of cones are arranged randomly in the human eyes.
The random arrangement gives rise to clumps containing only single type of cones, where
the eyes cannot distinguish colors. In addition, the random sampling causes a deterioration
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Cone mosaic of human and fish retina (pictures taken from Reference [37]): (a) human cone mosaic, (b)
freshwater fish, (c) litoral coastal fish, and (d) deep coastal fish.

of image quality [36], in which the authors showed that an irregular retinal mosaic array
causes a frequency-dependent reduction in signal amplitude and introduces random noise.
They further pointed out the retina irregularity reduces visual acuity especially for high
frequency signals.

The cone mosaic has also been examined in a variety of species in the animal society.
Figure 6.4b to Figure 6.4d illustrate the cone mosaic of fish in various aquatic environ-
ments. In the fresh water, where many wavelengths of light still penetrate the water, fish
have more photoreceptors and a more heterogeneous arrangement across species. As one
moves to deeper water, where the available wavelengths of light are more limited, there
is less variation in both the types of photopigments and the mosaic arrangements across
species. Those fish living in deep coastal waters where the available spectra are very lim-
ited show the least variation and the fewest photopigments [37]. In addition, researchers
have discovered UV (300-360nm)-absorbing cones in the Japanese dace fish, which enable
the fish to see wavelengths down to 360nm [38]. It has also been found that the mosaic
array of most vertebrates is regular. Those animals who need high acuity and rely heavily
on vision possess a very regular mosaic array, such as fish [39], [40] and mouse [41], [42].

6.2.3 Design Requirements for Multispectral Filter Arrays

Several critical issues in the design of CFA related to the effort of camera manufacture
have been summarized in References [25] and [28]: matching the sensitivity of HVS, en-
abling cost-effective reconstruction algorithms, immunity to color artifacts, tolerance to
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sensor imperfections, and immunity to optical crosstalk among neighboring pixels. These
criteria are associated with the two intrinsic features of CFAs, i.e., the selection of filter
type and the spatial arrangement of different filters. Inspired by the CFA design charac-
teristics and its biological relevance, we identify three important design requirements for
MSFAs: probability of appearance, spectral consistency, and spatial uniformity.

Probability of appearance guides the selection of filters. One criterion used in the design
of CFA (e.g., Bayer array) is that the pattern has to match the sensitivity response of the
HVS. Since the HVS is more sensitive to changes in the green spectral band, most CFAs
have more pixels sensitive to the green than to the red or the blue. In the design of MSFA,
the objective is mostly to achieve better target recognition and separation of the object from
clutter. We thus relate the POA, which is the ratio of the number of samples of a certain
type of filter to the total number of samples, to the effectiveness of the spectral band in
recognizing the target. The spectral band that affects the classification result the most will
be assigned more pixels in the filter array. Generally, for a specific application scenario, the
target(s) of interest is/are known a priori. An efficient multispectral camera would select
a proper subset of spectral bands that maximizes the class separability [43]. A number
of band selection algorithms [44], [45] have been proposed. In addition to selecting an
optimal subset of bands out of the original set according to a class-separability criterion,
some algorithms [46], [47] rank the selected spectral bands on the basis of eigenvectors and
eigenvalues. Knowing the importance of each spectral band, its probability of appearance
can then be derived accordingly.

Spectral consistency concerns the spatial locations of different filters to reduce the op-
tical crosstalk, a very common phenomenon existed in optical imaging systems [48]. As
illustrated in Figure 6.5, an incoming photon intersects with the blue filter at a certain angle
and enters the adjacent photodetector under the green filter instead of the blue one. This
results in a contamination of the adjacent pixel’s charge packet and generates artifacts in
the output image. Since the effect of optical crosstalk cannot be corrected using any image
processing methods, a sub-optimal design consideration is to arrange the filter array mo-
saic pattern in a way such that the crosstalk would be uniformly distributed across the entire
imaging plane, since a consistent effect of contamination would cause less damage than an

red filter green filter blue filter .
microlens
| | | | color filter
< photodetector
o’ % o" ¢ €———|— pixel cell
4———silicon substrate

FIGURE 6.5
Illustration of optical crosstalk. Redrawn from Reference [48]. (©) 2006 IEEE
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inconsistent artifact which interferes with the object recognition. In order to achieve this
design requirement, pixels of a certain spectral band should always have the same pattern
of neighbors, a property which we refer to as the spectral consistency.

Spatial uniformity also concerns the spatial arrangement of different filters. In a mo-
saicked pattern, since each pixel only has one direct measurement from a certain spectral
band, the unmeasured spectral components of the pixel must be estimated from its neigh-
bors. This requires that the filter array for each spectral band samples the entire image
as evenly as possible. If the pixels distribute densely in some regions while sparsely in
other regions, serious information loss might occur. The research in biological studies also
supports that the uniform distribution outweighs the random arrangement.

We consider the above three criteria as the most important issues in the design of MSFAs.
Although there might exist some other concerns, the extra constraints introduced could
result in empty set of solutions. As in the color domain, no single CFA can satisfy all the
design criteria listed previously [25].

6.3 A Generic Filter Array Design Method

Since normally, two-dimensional signals are digitized and stored as rectangularly sam-
pled arrays, in this chapter, we only discuss the MSFA generation using rectangular arrays.
For in-depth discussions using the hexagonal tessellation, readers are referred to Refer-
ence [18].

Suppose we have selected a set of representative spectral bands and derived their prob-
abilities of appearance, this section reviews the generic MSFA design method [18] with
a focus on the spatial arrangement of various filters. The design algorithm starts from
a checkerboard pattern and generates different MSFAs following a binary tree separation
procedure. The binary tree-driven MSFA design process guarantees that the pixel distribu-
tions of different spectral bands are uniform and highly correlated. We will show, through
case studies, that most of the CFAs currently used by the industry can be derived as special
cases of MSFAs generated using the generic algorithm.

We adopt the checkerboard pattern as the starting point to generate different filter ar-
rays. The selection of the checkerboard pattern is based on a number of properties that this
pattern possesses: first, the checkerboard pattern is symmetric horizontally, vertically, and
diagonally; second, the black and white blocks are uniformly distributed across the whole
board; and third, this pattern has the same sampling frequency in both the horizontal and
vertical directions. These properties facilitate the generation of MSFA patterns that satisfy
all the design requirements.

Suppose we need to generate a K-band filter array and each spectral band has its specific
POA ry,--- ,rg, where r; = % with n being an integer, and Zszl r; = 1. First, we generate
a binary tree such that it has K leaves and the leaf i represents a spectral band with a POA
of r;. Following this binary tree, we treat the original checkerboard as the root and use
a combination of decomposition and subsampling operations to generate various patterns.
Each resulting pattern should correspond to one node in the binary tree. Finally, all the leaf
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patterns are combined to form a mosaic pattern, which is the desired MSFA satisfying the
three design requirements.

Figure 6.6 illustrates the creation of a five-band MSFA using a binary tree with five leaves
(Figure 6.6a), which is generated based on the specified probabilities » = {%, %, %, %,% .
Following this tree, various patterns are generated through the operation of decomposition
and subsampling as shown in Figure 6.6b. The decomposition is applied to the nodes
at the even levels of the binary tree (including level zero, i.e., the root). The function
of decomposition is to treat the pattern as a checkerboard and then divide the black and
white blocks into two patterns. For example, the label 1 and label 2 patterns are generated
by decomposing the original checkerboard, and the label 7 and label 8 patterns are the
decomposed results of the pattern 3. The subsampling is to downsample the pattern by
2 along the horizontal and vertical directions, where /evel refers to the level of the
pattern being processed. It can be seen that the label 3 and label 4 patterns are obtained by
subsampling pattern 1, and the label 5 and label 6 patterns are the results of subsampling
pattern 2 by 2.

Process the checkerboard until it has the same structure as the binary tree. The next step is
to combine all the leaves to generate a mosaic pattern, as shown in Figure 6.6¢, in which the
left figure is obtained by combining all the leaf patterns in Figure 6.6b, and the right figure
is the color representation. It can be shown that two of the popularly used CFAs illustrated
in Figure 6.3 are actually special cases generated from the generic algorithm. For example,
if we combine patterns 2, 3, 4 and assign different colors, the resulting mosaic pattern is the
same as the Bayer array, and the Sony RGBE array can be obtained by combining patterns
3,4,5,and 6.

One unavoidable constraint associated with the binary tree-based method is that the POA
is limited to power of two. In the case that the probabilities do not fit the tree, we choose
the closest approximation to substitute the original POAs. This approximation is necessary
to satisfy the uniform distribution design requirement which dictates that each pixel always
has 2" amount of neighbors. Note that the rectangular domain is similarly constrained; each
pixel is either in a four-neighborhood or an eight-neighborhood.

From the above case studies, it is easy to see that the filter arrays generated from the
generic method have the following characteristics: first, each spectral band is arranged
symmetrically and uniformly; second, each band has the same number of neighbors of a
certain spectral band but the relative positions of different bands are not always the same;
and third, the probability of appearance of each spectral band is determined by the two
separation steps. The MSFA generation process described above can be mathematically
formulated as a sampling problem of multispectral images [18].

6.4 A Generic Binary Tree-based Demosaicking Method

Although there has been considerable research in the field of demosaicking algo-
rithm [49], [50], [51], [52], [53], [54], [55], they are confined to the three-band Bayer
array and cannot be directly extended to multispectral demosaicking. Due to the increased
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FIGURE 6.6

Generic MSFA generation process: (a) binary tree, (b) checkerboard separation, and (c) five-band MSFA generated by combining all the leaf patterns from (b). © 2006
IEEE
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number of spectral bands in the multispectral domain, the resolution of known MSFA sam-
ples of each band would be gradually reduced. On one hand, this resolution reduction
inevitably introduces severe artifacts which is not desired; however, on the other hand, the
reduced spatial resolution brings extra spectral information. The correlation among differ-
ent spectral bands has the potential of providing more information than the independent
demosaicking of individual image planes. As in the color domain, the spectral correla-
tions have been intensively utilized in the CFA demosaicking algorithms to render better
reconstructions [51], [56], [57], [58]. In the following, we first discuss the possible spectral
correlations that can help the demosaicking process. Then, a demosaicking algorithm in-
volving three interrelated components that facilitate the exploration of spectral correlation
will be presented.

6.4.1 Correlation Analysis of Multispectral Images

One commonly used concept of spectral correlations in the CFA demosaicking is the
color ratio [59] or the color difference rule [51], which states that within a local image re-
gion, the ratios or differences between different color channels are very similar. Instead of
estimating the absolute value in the two chromatic color channels (i.e., red and blue), these
algorithms estimate the color ratio or difference in order to derive the chrominance value.
Since the human visual system is more sensitive to color artifacts than to luminance or satu-
ration errors [60], these schemes can reconstruct full color images with less visible artifacts
and sharp edges. Although very promising in the color domain, these rules, however, do
not hold in the multispectral domain as we have analyzed in Reference [19].

Another important inter-band correlation in the color domain is that all color bands pos-
sess similar edge information [61], [62]. Most wavelet-based demosaicking algorithms
explore this correlation [63], [64]. In the multispectral domain, due to the wide wavelength
range with each band capturing very different signatures, the edge information of differ-
ent spectral bands would not be the same. Although it is true that different spectral bands
might identify different edge locations, there should be no spurious edges. In other words,
if the edges derived in all spectral bands are combined together, the resulting image would
present all edge information of the scene. One example is elaborated in Figure 6.7, where
we sum up seven edge images (they have intensity 1 at edge locations and 0 everywhere
else) generated from a 7-band multispectral image using the Canny edge detector, and dif-
ferent colors are used to denote different intensity values. Note that for the worst case, if all
the images possess different edge locations, then the summation image would have thick
edges and all edge pixels have intensity one. However, we can see from Figure 6.7 that only
a few pixels possess intensity one and most edges still have single-pixel width, resulting
from similar edge locations among different spectral bands.

The consistency of edge locations among different spectral bands enables better recon-
structions of high frequency information. The essential idea is that we identify a band
with rich high frequency details and then use the edge information of this band to help
the reconstruction of the other image planes. For this purpose, we developed a generic
demosaicking algorithm based on the same tree that generates the MSFAs. The algorithm
progressively estimates the missing pixel values, while utilizing the edge correlation infor-
mation. Three interrelated issues need to be addressed: band selection — the determination
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FIGURE 6.7 (See color insert.)

Summation of edge images of seven spectral bands. Different colors represent different intensity values (1:
red, 2: green, 3: blue, 4: cyan, 5: magenta, 6: yellow, 7: white). (© 2006 IEEE

of the interpolation order of different spectral bands; pixel selection — the determination of
pixel interpolation order within each spectral plane; and interpolation — the interpolation
algorithm to estimate missing pixels within each spectral band. The following discussion
will focus on the rectangular tessellation. The same idea can be extended to the hexagonal
domain.

6.4.2 Band Selection

In the multispectral domain, since normally there are more than three spectral bands that
need to be processed, the order of spectral band selection for interpolation needs to be pre-
determined. As illustrated in Section 6.3, different spectral bands possess different POAs.
It is intuitive that more detailed information will be preserved in the spectral bands with
higher POAs and that these bands contribute more in obtaining a reconstructed image that
better resembles the real scene. Moveover, the reconstructed image plane can be utilized to
assist the interpolation of other spectral bands with lower POAs based on the spectral cor-
relation of consistent edge locations. For this reason, we start the interpolation by choosing
a spectral band with the highest POA.

In the binary tree, band selection can be viewed as a process of selecting leaf nodes
at different tree levels. We know the nodes at the same level possess the same POA and
the deeper the level, the smaller the POA. To select spectral bands with their POAs in a
descending order, we start from the first level of the binary tree. If there is a leaf node at
this level, it will be the first selected spectral band for interpolation. This process continues
as the tree level goes deeper. If there exists more than one leaf at a certain level, the selection
order among these nodes is random. This band selection scheme facilitates our exploitation
of spectral correlation. Since the band which preserves the edge information the best will
be interpolated first, the estimation of other bands can utilize the edge information of the
first interpolated image plane provided that different bands possess similar edge locations.

6.4.3 Pixel Selection

In most demosaicking schemes in the color domain, the missing pixels are estimated
only based on known pixel values. However, in the multispectral domain, more missing
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pixels are present in each spectral band and only using known MSFA samples will not
generate good results. Here, we present a “progressive” demosaicking method, taking into
consideration that sparse samples exist in MSFA patterns. That is, part of the missing pixel
values are estimated first, then the estimated pixel values together with the known MSFA
samples are used to estimate other unknown pixel values. In this way, it is very important
to determine which pixel locations are estimated first and which are the next.

To effectively utilize the structural features of different patterns presented in the binary
tree, we develop a pixel selection scheme, which is a binary tree traversal process. Start-
ing from one of the leaf patterns selected in the band selection component, the algorithm
first interpolates the missing band information at pixel locations where its sibling pattern
locates, then the algorithm goes up one level of the binary tree and finds the sibling of its
parent pattern. If its parent’s sibling is an internal node, then the leaf patterns of the subtree
under this sibling pattern are investigated. This process continues until the root node is
visited. It can be seen that, at each step, after interpolating the selected pixel locations, the
resulting pattern is the same as the parent pattern. Thus, the pixel selection scheme guar-
antees that all the intermediate patterns during the demosaicking process are those present
in the binary tree.

Figure 6.8 illustrates an example of the pixel selection process, in which we aim to re-
construct spectral band 7. Starting from the node 7, we first select the pixel locations where
its sibling pattern 8 locates (Figure 6.8b). We use 7/8 to denote the interpolation of the 7
value at the 8 location. Then we go up one level to node 3 and select pixel locations where
its sibling pattern 4 locates (Figure 6.8c). Continuing this process one more level will lead
us to the internal node 2, which is the combination of pixel locations of the pattern 5 and 6
(Figure 6.8d). The directed dash lines in Figure 6.8a indicate the trace of traversal and the
resulting pattern at each step is shown in Figure 6.8b to Figure 6.8d, respectively. Note that
the intermediate patterns are determined by the traversal trace on the binary tree, and the
POA at each step is given by 1/2/¢v¢/ 1 /2/vel=1 ... 1/2,

7 7/8 7 7/8 7 7/8 7 7/8 7 |7/5|7/18|7/5| 7 |7/5|7/8|7/5
7/4 7/4 7/4 7/4 7/6|7/4|7/6|7/4|7/6|7/4|7/6|7/4
7/8 7 7/8 7 7/8 7 7/8 7 7/8|7/5| 7 |7/5|7/18(7/5| 7 |7/5
7/4 7/4 7/4 7/4 7/6(7/4|7/6|7/4|7/6|7/4|7/6|7/4
7 7/8 7 /8 7 7/8 7 7/8 7 |7/5|7/8(7/5| T |7/5]|7/8|7/5
7/4 7/4 /4 7/4 7/6(7/4(7/6|7/4|7/6|7/4|7/6|7/4
7/8 7 7/8 7 7/8 7 7/8 7 7/8|7/5| 7 |7/5|7/18(7/5| T |7/5
7/4 7/4 7/4 7/4 7/6|7/4|7/6|7/4|7/6(7/4|7/6|7/4
() (b) (© (@

FIGURE 6.8

Ilustration of pixel selection process of band 7. (a) The directed dash lines indicate the trace of traversal. (b)
The 7 values at pixel locations with known 8 are first estimated based on known 7s. (c) The 7 values at pixel
locations with known 4 are secondly estimated based on both known and estimated 7s from (b). (d) At node 1,

pixel locations at 2 positions are selected, which are combinations of pixel locations at node 5 and 6.
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(a) (b)
FIGURE 6.9

The basic patterns: (a) quincunx pattern, and (b) rectangular pattern.

6.4.4 Interpolation

Given a certain pixel location within a certain spectral band, selected based on the band
and pixel selection scheme described above, the last issue to be investigated is how to
estimate the missing pixel values based on neighboring pixel information. The key to the
design of a generic demosaicking algorithm is the application of the binary tree. We observe
that the set of pixels selected based on the binary tree always form one of the two regular
distribution patterns, i.e., the quincunx or the rectangular, as shown in Figure 6.9. It can
also be seen that through subsampling, all the patterns in the binary tree can be transformed
to these two basic patterns. Therefore, the demosaicking of MSFAs eventually relies on
the interpolation of these two basic patterns.

In order to preserve edge details, we adopt the idea of edge-sensing interpolation (i.e.,
weighted sum of neighboring pixels with weights determined based on the edge informa-
tion), which has been successfully used in CFA demosaicking [51], [59]. Let B denote the
spectral band being processed and B; ; the known pixel value at the spatial location (i, j),
éi, j the corresponding estimate, the missing components of the quincunx pattern shown in
Figure 6.9a are estimated using the weighted sum of four nearest neighbors,

b Zx,t W/i+s,j+tBi+s,j+r
L]
Zs,t vviJrs,jH

with |s 47| = 1,Vs,t € {—1,0,1}. The weights of the two neighboring pixels along the
vertical direction are calculated by

6.1)

Wm,n - (1 + ’Bm+2,n - Bm.n| + ‘Bm—Z,n - Bm,n’

1 1 _ (6.2)
+ §|Bm71,nfl _Bm+l,n71| + §|Bm71,n+l _Bm+1,n+l |)
and that along the horizontal direction is
Wm,n - (1 + ’Bm,n—&-Z - Bm,n‘ + ‘Bm.,n—l - Bm,n’
(6.3)

1 _

+ 5 |Bm+l.n71 - Bm+l,n+l| + 5 |Bm71,n71 - Bmfl,nJrl |) :

It can be seen that the weight W, , is inversely proportional to the edge magnitude at loca-
tion (m,n). By doing so, the unknown pixel is interpolated along the edge direction.

For the rectangular pattern shown in Figure 6.9b, we only need to estimate the set of the

shaded pixels as the resulting pattern is again a quincunx distribution. Using the same idea,
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the unknown shaded pixel values are estimated by the weighted sum of the four diagonal
neighbors. The weights of the left-diagonal are calculated by

Winn = (14 [Bms2.142 — Bmn| + [Bm—2.1—2 — B

1 1 . (6.4)
+ 5 ‘Bm7n—2 _Bm+2,n| + 5 |Bm—2,n - Bm7n+2|)
Similarly, the right-diagonal weights are
Wm,n — (1 + |Bm+2,n72 - Bm,n| + |Bm72,n+2 - Bm,n|
(6.5)

1 1 _
+ 5 ‘Bm72,n _Bm,n72| + 5 |Bm7n+2 - Bm+2,n|) !

This edge-sensing approach interpolates the unknown according to pixel weights derived
from edge information. Thus, the estimation of edge information directly affects the qual-
ity of reconstructed images. In multispectral imaging, as the number of spectral bands
increases, the spatial resolution decreases in certain spectral bands and the edge informa-
tion based on the low resolution spectral band would not be reliable. As analyzed before,
the edge information in different spectral bands is either similar or partly overlapped. The
spectral band with the highest POA preserves the edge information the best. Therefore,
the edge information in high resolution spectral band can be used to calculate the weights
for low resolution bands since the band selection scheme guarantees the high resolution
spectral bands are reconstructed first. We refer to the proposed method as the binary tree
based edge sensing method (BTES).

6.5 Experiments and Results

In the color domain, the CFA has a significant impact on the quality of reconstructed
images [25]. Similarly, the characteristics of MSFAs also play an important role in de-
termining the maximum information that can be reconstructed from the mosaicked data.
To fairly evaluate the two components involved in the MSFA technique, i.e., mosaicking
and demosaicking, we conduct evaluations from two aspects. First, we carry out evalua-
tions of the intrinsic properties of filter arrays by assessing how well the generated MSFAs
satisfy the design criteria. Then, experiments are performed to evaluate the demosaicking
algorithms using two performance measures: the commonly used root mean square error
(RMSE) and the classification accuracy.

6.5.1 Pure Evaluation of Generated Filter Arrays

From the design requirement analysis, we know that the spatial uniformity property guar-
antees that there is equal amount of information across the image plane such that the miss-
ing spectral information can be estimated with the same degrees of fidelity. On the other
hand, the spectral consistency can counteract the artifacts caused by the optical crosstalk.
To assess the intrinsic properties of the filter arrays, we design two performance metrics
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to measure the spatial uniformity and the spectral consistency, referred to as the static
coefficient (SC) and the consistency coefficient (CC), respectively.

6.5.1.1 Static Coefficient

In each filter plane, the pixels with known measurements are called the active pixels and
all the others are the dead pixels. To assess the spatial uniformity of individual band, we
only concern the active pixels, which means we will be processing images with a bunch of
“holes”. In order to illustrate the effect of spatially non-adjacent pixels on one another in
a more rational way, we introduce the electrostatic force model, in which the active pixels
are interpreted as static electric particles with the same polarity of unit charge. We assume
all the active pixels in a filter plane create static force fields around them. The joint force
exerted on the particle of interest within a certain neighborhood is used to define the SC
metric. The size of the neighborhood should be larger than or equal to the minimum dis-
tance between any two active pixels, i.e., the minimum number of active pixels included in
a neighborhood must be two. Figure 6.10 illustrates one example of the particle interac-
tion, where the black blocks indicate the active pixels. The center pixel i is the particle of
interest, which is surrounded by pixels 1,---,5. The vector Fy; represents the force exerted
on the pixel i by the neighboring pixel k (k € _4;, .4; denotes the set of neighboring pixels
of i), whose magnitude and direction are determined by

1 Yk —Yi

Fii|| = , tan@ =
I[Ell (o —xi)% + (k —yi)? Xk — Xi

(6.6)

where ||-|| denotes the magnitude of a vector and 6 the direction. Note that the magnitude of
the force is inversely proportional to the square of the distance between the two pixels and
the direction of the force is along the axis that connects the two active pixels, pointing away
from the pixel of interest. The total force F; exerted on the center pixel i by its neighbors is

Fi=) Fy (6.7)
keN;

The SC of an MSFA can then be calculated by

SC=1 lf !
szll—i-,u]'

(6.8)

where (1; denotes the mean magnitude given by u; = N%_Z?ZI ||Fi||, and Nj; is the total
number of active pixels in spectral band j, K the number of spectral bands. For a certain
spectral plane, the more uniformly the active pixels distribute, the smaller the i, and the
smaller the SC. Since SC is normalized to be between 0 and 1 in Equation 6.8, a zero SC
would indicate a uniform distribution, whereas a maximum SC (SC = 1) implies the least

uniformity.

6.5.1.2 Consistency Coefficient

In the mosaicking technique, we expect all the pixels in a certain spectral band al-
ways have the same immediate neighbors so that the contamination introduced by optical
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FIGURE 6.10
Illustration of electric force. (©) 2006 IEEE

crosstalk generates the same effect on all the pixels in this spectral band. To quantify the
spectral consistency, we begin by forming the notions of superpixel and template super-
pixel. A superpixel is the combination of a center pixel and its immediate neighbors. A
template superpixel is a distinguishable superpixel with the center pixel from a specific
spectral band. For example, the Bayer CFA shown in Figure 6.11a has four template su-
perpixels, illustrated in Figure 6.11b to Figure 6.11e. The two template superpixels in
Figure 6.11b and Figure 6.11c have the same G center pixel, hence, we refer to them as
the template superpixels of the G band. Likewise, Figure 6.11d and Figure 6.11e show the
template superpixels of the R and the B bands, respectively. For a certain spectral band j,
we identify all template superpixels and label them as Tj1,T}2,- - -, T}y, where the subscript
m denotes the number of different templates in this band. It is known that an optimal design
of spectral consistency admits one template superpixel for each spectral band. The more
template superpixels a certain band has, the more inconsistent it would be across the image
plane, and the worst case is when there are equal number of superpixels matching different
templates. Let nj1,nj,---,nj, denote the number of superpixels matching different tem-
plates, and nj = nj; +nj +--- +nj, is the total number of superpixels in spectral band ;.
Then the probability of occurrence of template i is p(7j;) = n” . We define an entropy-like

metric as follows:
m

H(consistency) = Z Tji)log p(Tj;) (6.9)

to measure the spectral consistency, referred to as the consistency entropy. Note the larger
the consistency entropy, the less consistent the pattern.

The consistency entropy is an overall measure which does not indicate to what degree
these template superpixels differ from each other. For example, the two template super-
pixels of the G band in Figure 6.11b and Figure 6.11c have the same number of different
neighbors (4 Gs, 2 Rs, and 2 Bs), but their relative positions are different. In other cases,
the superpixel might have neighbors of different spectral bands. For the clarity of expla-
nation, we refer to the former as the relative position difference (RPD) and the latter the
spectral band difference (SBD). Intuitively, these two types of differences would cause
additional inconsistency aside from that caused by the different numbers of template su-
perpixels, which should be taken into account in the formulation of CC. In addition, the
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FIGURE 6.11
Ilustration of the superpixel: (a) an 8 x 8 Bayer array, (b, ¢) two different superpixels of the G spectral band,
(d) superpixel of the R spectral band, (e) superpixel of the B spectral band. (¢) 2006 IEEE

inconsistency caused by SBD is more severe than that of RPD. Therefore, we introduce
two penalty terms, pSBD and pRPD, to account for the contamination introduced by SBD
and RPD, respectively. Combined with the consistency entropy, the CC of a single band is

defined as
1 1

1 +PpRPD;+ pSBD; 1 + Hj(consistency)
and the CC of the entire MSFA is

CC;

1 K
CC=1-2) CC (6.10)
j=1

It is apparent that a smaller value of CC implies a more consistent pattern and CC = 0
indicates the optimal spectral consistency.

The next problem is how to determine the values of pRPD and pSBD. It is valid to as-
sume that crosstalk only happens between adjacent pixels (here, we use eight-adjacency
for rectangular tessellation). Therefore, the window size to analyze pRPD and pSBD is
3 x 3. We write the 3 x 3 template superpixel in a lexicographical form. For example,
the template superpixels in Figure 6.11b and Figure 6.11¢c are Ty = GRGBGBGRG and
15> = GBGRGRGBG. With this representation, it is easier to see that finding the difference
between template superpixels of a certain spectral band is simply a problem of finding “dis-
tance” between strings (or codes). We adopt the Levenshtein distance (or edit distance) [65]
to serve this purpose. The Levenshtein distance counts a difference not only when strings
have different characters but also when one has a character whereas the other does not.
One of the most popular applications of the Levenshtein distance is spell checking. It tries
to find the most common typing errors, e.g., character omissions, insertions, and substitu-
tions. The idea is to calculate the minimum number of such operations to convert from one
string (code) to another. We calculate the Levenshtein distance between different template
superpixels. Since the size of the superpixel is always the same in our application, there
is no need for insertion or deletion. Only two operations, substitution and swapping, are
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FIGURE 6.12

Three-band filter arrays: (a) periodic pattern, (b-d) randomly permutated versions of the periodic pattern with
(b) 50 random pixels, (c¢) 200 random pixels, and (d) 900 random pixels. (©) 2006 IEEE

allowed. We produce a numerical score according to the following penalty scores, which is
widely used in biological applications:

e The penalty for each match is 0.
e The penalty for each swapping among neighborhood pixels is 1.
e The penalty for each mismatch or substitution is 2.

We define the summation of minimum swapping penalty as pRPD, and that of mismatch
penalty as pSBD. For example, if a spectral band has four template superpixels, there are
four possible ways to convert them to the same string (or code). Then the pRPD and pSBD
are calculated as the minimum summation of penalty to perform the conversions.

One experiment is conducted by choosing an MSFA generated from the generic method
as the initial pattern and then randomly permutating the pixel locations of different spec-
tral bands to produce new random patterns for comparison purpose. The initial pattern
tested is a three-band filter array of size 64 x 64 with probabilities of appearance %, iult
(see Figure 6.12a). The three permutated patterns (Rand1, Rand2 and Rand3) are obtained
by randomly permuting 50, 200, and 900 pixels, respectively (see Figure 6.12b to Fig-
ure 6.12d). The quantitative comparisons are shown in Table 6.1. Both the SC and CC
values in this table show that the initial pattern exhibits the best spatial uniformity and
spectral consistency.

TABLE 6.1

Comparison of SC and CC between a three-
band MSFA and its three permutated patterns
(Rand1, Rand2, Rand3). (©) 2006 IEEE

MSFA Randl Rand2 Rand3

SC 0 0.354  0.589  0.760
CC 0294 0997 1.000 1.000
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FIGURE 6.13 (See color insert.)

The visualization of the two real multispectral data sets and the corresponding class labels: (a) 92AV3C9 - band
1, (b) FLC1 - band 3, (c) class label of 92AV3C9, red-grass, green-tower, blue-corn, cyan-soil, yellow-hay, (d)
class label of FLC1, red-oats, green-corn, blue-red clover, cyan-bare soil, and yellow-wheat. (©) 2006 IEEE

6.5.2 Evaluation of Mosaicked Multispectral Imaging System

The performance of a certain MSFA demosaicking algorithm can be evaluated from two
perspectives: the reconstruction accuracy and the target classification accuracy. There have
been several commonly used metrics in literature to measure the reconstruction accuracy,
including root mean square error (RMSE), peak signal to noise ratio (PSNR) and subjective
comparison, etc. To measure the fidelity of the demosaicked images, we adopt the RMSE
metric defined as

N,—1N.—1

ZZ Y Ui, §) = fili, TP

k=1 i=0 j=0

RMSE =

NbN N,

where f; represents the k-th spectral plane of the demosaicked image and f; that of the
original one; N, N,, and N, denote the number of spectral bands, rows, and columns of the
multispectral image, respectively. In order to evaluate the reconstructed images regarding
the target detection or recognition performance, classification is carried out on both the full
multispectral images and the demosaicked images using a simple k-nearest neighbor (kNN)
classifier [66].

Two sets of real multispectral data [67], popularly used in multispectral image analysis,
are used to evaluate the proposed method. Figure 6.13a and Figure 6.13b display one
spectral band of each data set (Figure 6.13b is only a small segment of the original data set).
The 92AV3C9 contains 9 spectral bands selected from a June 1992 AVIRIS data cube [68].
The Flightline C1 (FLC1) image was collected with an airborne scanner in June 1966,
which contains 12 spectral bands with the wavelength varying from 0.4um to 1.0um. These
two data sets contain a significant number of vegetative species or ground cover classes and
have “ground truth” available. We select five ground cover classes from each of the data
sets according to the ground truth provided in References [68] and [69]. Figure 6.13c
and Figure 6.13d show their corresponding class labels, where the five different colors
correspond to the five different classes. For each cover class, we use half of the pixels to
train the classifier and the other half serves as the test samples. In addition, we generate
eight synthetic data sets by selecting seven spectral bands from the hyperspectral images
created by a simulator [70] using the band selection method discussed in Reference [71].
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FIGURE 6.14
Four examples of the eight synthetic targets. (©) 2006 IEEE

Each multispectral image has a different object. Figure 6.14 shows four examples of the
eight synthetic targets. We treat each target as one class, which gives us in total eight
classes. The training data set also consists of half of the target pixels uniformly selected
from each target, and the rest of the target pixels are used as the test data.

To study the MSFA mosaicking and demosaicking performance generalized to differ-
ent numbers of spectral bands, we form new multispectral images by selecting different
numbers of bands from each of the above multispectral data sets. For example, we create
five multispectral images from the 92AV3C9 data, and they contain three to seven bands,
respectively. The band selection is performed using the multispectral system [67] devel-
oped at Purdue University. The created multispectral images are first sampled using the
derived MSFAs to generate the mosaicked images. Then we apply different demosaicking
algorithms to reconstruct the full multispectral data. We design two sets of experiments to
evaluate the performance of the BTES method. In the first experiment, we investigate the
effectiveness of incorporating the binary tree and the edge information in the demosaick-
ing process. In the second experiment, we compare the proposed BTES method with three
advanced CFA demosaicking approaches published recently.

6.5.2.1 Effectiveness of Binary Tree and Edge Sensing Method

The proposed BTES approach integrates the binary tree-based scheme and the edge-
sensing interpolation. In order to investigate the effectiveness of these two components,
we implement three demosaicking methods that are variants of BTES, including the classic
bilinear interpolation (BI) without using either component, the binary tree-based bilinear
interpolation (BTBI), and the edge-sensing interpolation without the binary tree considera-
tion (ES). Edge-sensing based demosaicking methods (i.e., ES and BTES) take into account
different weights of each individual neighbors when estimating the missing information,
while non-edge-sensing methods simply treat the neighboring pixels equally. Binary tree-
based methods (i.e., BTBI and BTES) estimate the missing pixels based on not only known
MSFA samples, they also use estimated MSFA samples obtained following the binary tree
structure.

The classification accuracy generated by BTES and its three variants on the real multi-
spectral data is summarized in Table 6.2, and the results of the synthetic data are listed in
Table 6.3. Table 6.4 and Table 6.5 show the RMSE of different demosaicking methods on
both data sets. From these four tables, we make the following three observations. First of
all, among the demosaicking algorithms evaluated, BTES, in most cases and on average,
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TABLE 6.2
Classification accuracy (%) of original real multispectral data and reconstructions using different methods.
(© 2006 IEEE

92AV3C9 FLCI

Images 3 pond  4-band 5-band 6-band 7-band 3-band 4-band S-band 6-band 7-band

ORG 90.30  91.80 90.80 91.63 89.63 76.74  80.79 8255 83.19  83.00
BTES 8896 9365 91.14 9130 9047 7843 8256 84.39 8593 8544

ES 88.12 9230 90.63 89.80 8846 77.83 82.14 83.88 8529  84.67

BTBI 86.79 9281 89.63 90.80 88.63 7779 8232 8375 8524  84.56

BI 86.78 92.14 9030 9097 8879 7747 81.84 8353  84.88 84.17
TABLE 6.3

Classification accuracy (%) of original synthetic data and
reconstructions using different methods. (©) 2006 IEEE

Image 3-band 4-band 5-band 6-band 7-band

ORG 67.71 6914 69.92 7083 7314
BTES 6198 6682 68.79 6924  70.79

ES 62.04 66.02 6679 6648  67.54
BTBI  60.03 65.84 6590 6437  65.79
BI 60.54 65.15 6550 6480 65.71

outperforms its three variants from both classification accuracy and RMSE perspectives.
We also observe that the binary tree-based methods (i.e., BTES and BTBI) outperform the
corresponding schemes without binary tree considerations (i.e., ES and BI).

Another important observation is that the classification performance cannot be improved
by simply increasing the number of spectral bands. As illustrated in Table 6.2, the four-
band image gives the highest accuracy for the 92AV3C9 data, while the six-band image is
the best for the FLC1 data. There are two underlying reasons for this phenomenon: first,
the newly introduced spectral information does not guarantee to increase the class separa-
bility of multispectral data; second, there is a tradeoff between the spectral and the spatial
resolution when using the MSFA technique. The extra spectral information is introduced
at the cost of reducing the reconstruction performance due to lower spatial resolution. This
observation can be further verified by investigating the RMSE of the reconstructed images
from Table 6.4 and Table 6.5. It can be seen that the RMSE values increase as the number
of spectral bands increases; that is, the lower the spatial resolution, the worse the recon-
struction performance.

Our third observation is that the classification accuracy of the demosaicked images is
comparable to that of the original data. Interestingly, for the real multispectral scene, in
most cases, the reconstructed images present higher classification accuracy. However, this
is not true for the synthetic data, for which the original images always generate the highest
classification performance. This phenomenon is related to both the characteristics of the
selected data sets as well as the intrinsic feature of the mosaicking and the demosaicking
process. We realize that the real multispectral images are acquired in real world environ-
ment interfered by both the sensor noise and all kinds of other environmental effects, com-
pared to the synthetic data generated with a perfect zero interference. We further notice that
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TABLE 6.4
RMSE of reconstructed real multispectral data using different methods. (©) 2006 IEEE

; 924V3C9 FLCI
Mages 3 band 4-band S-band 6-band 7-band 3-band 4-band 5-band 6-band 7-band

BTES 8.92 18.88  18.06 16.96  19.28 3.50 4.27 4.48 4.65 4.77

ES 9.20 1885 17.87 1747 19.73 3.85 4.48 4.90 5.24 5.45

BTBI 9.11 1882 1832 1730 19.61 4.02 4.60 4.80 5.05 5.21

BI 9.30 1890 1839 1741 19.75 3.99 4.66 4.95 5.27 5.47
TABLE 6.5

RMSE of reconstructed synthetic data using different meth-
ods. (© 2006 IEEE

Image 3-band 4-band 5-band 6-band 7-band

BTES 4.10 3.78 4.36 5.40 6.63

ES 4.37 4.05 4.89 6.28 7.80
BTBI 4.39 4.03 4.77 6.16 7.70
BI 4.43 4.07 4.87 6.30 7.88

the mosaicking and the demosaicking process combined together act as a smoothing filter
(interpolation of missing pixel information from weighted summation of neighbors), which
actually suppresses both noise and outliers in the original images. Therefore, the demo-
saicked real multispectral images, with less noise and outliers compared with the original
data, would be able to generate higher classification accuracy. On the other hand, due to
the loss of high frequency information, the demosaicked synthetic data would yield lower
classification performance than the original ones, which contain all the information of the
demosaicked images.

To validate the above analysis, we add 20dB Gaussian noise to the synthetic images
and then perform the mosaicking and demosaicking process. The classification accuracy
improvement, defined as ipr = %“4<—“er . 100%, where accy. and acc,, denote the clas-

accor

sification accuracy using the demosaicked image and the original data, respectively, with

TABLE 6.6

Classification improvement between demosaicked and orig-
inal synthetic images of noisy (ipr,) and noise free (ipr)
cases. (©) 2006 IEEE

Image 3-band 4-band S5-band 6-band 7-band

accor 6771  69.14 6992  70.83 73.14
accge 6198  66.82 6879 69.24  70.79

ipr -8.46  -3.37  -1.62 -2.26 -3.21

accom  39.67 5154 5644  57.00 57.77
accgen  62.18 6675 6787 6658  68.36

ipry 56.75 29.5 2025 16.82 18.34
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and without noise cases is summarized in Table 6.6, in which accy,,, and acc,,, denote the
classification accuracy of the noisy data. We relist the classification results of pure signals
without noise in Table 6.6 to facilitate comparison. Note that for the images without noise,
the classification improvements are all negative, that is, the demosaicked images produce
lower classification accuracy than the original data. However, for the noisy data, there exists
up to 56.75% improvement on the classification performance of the demosaicked images
over the original noisy data. These results verify our previous analysis on why the original
data do worse than the demosaicked images. In real world applications, it is impossible to
generate a perfect, noise free image. Most likely, the captured images would contain dif-
ferent types of noises, for which the demosaicked images after the process of mosaicking
and demosaicking can provide comparable classification performance as the original data.

6.5.2.2 Comparison with Advanced CFA Demosaicking Algorithms

The purpose of this experiment is to evaluate the proposed BTES algorithm with existing
rich collection of CFA demosaicking algorithms. We selected three advanced CFA demo-
saicking approaches [51], [56], [58] recently published in the literature. These techniques
effectively utilize the spectral and spatial correlations to suppress artifacts. Algorithm of
Reference [51] uses edge-directed interpolation and effectively exploits the color difference
correlation, in which the green channel is interpolated first, and the red and blue channels
are interpolated with the green band information as a correction term. The postprocess-
ing step uses the color difference information (i.e., green-red and green-blue) to reduce
color artifacts. Algorithm of Reference [58] formulates the demosaicking problem as an
iterative process of reconstructing correlated signals (i.e., the green plane and the red/blue
plane) from their subsampled versions. Another reconstruction approach, Reference [56],
introduces wavelet analysis to decompose the original image into detail subbands. The al-
gorithm enforces similar high-frequency information for the three color planes by updating
the detail subband of the red and blue channels so that they are within a threshold to that of
the green channel.

In order to perform a fair comparison, instead of modifying the algorithms to deal with
multiple bands, we choose three adjacent bands (one visual band and two infrared bands)
from multispectral images and then treat them as the three color planes. We observe that
the visual band contains more detail information, therefore, we use the visual band as the
green channel and the other two infrared bands as the red and blue channels. The quanti-
tative comparisons based on the RMSE and the classification accuracy are summarized in
Table 6.7 and Table 6.8, respectively. From the RMSE comparison, we see that algorithm

TABLE 6.7
RMSE comparison between BTES and three CFA demosaicking algorithms.
(© 2006 IEEE

Image 747 dcl0 fl15 mig tankO tankl tank2 tank3

BTES 346 377 440 4.08 621 411 471 371
Alg. [56] 7.66 737 828 889 964 717 8.62 7.33
Alg. [51] 3.01 309 388 479 572 249 461 236
Alg. [58] 4.67 458 526 571 665 482 560 455
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TABLE 6.8
Classification accuracy (%) of original and reconstructed image
using different demosaicking algorithms. (©) 2006 IEEE

Alg. Original BTES Alg. [56] Alg. [51] Alg. [58]

acc 67.71 61.98 53.717 57.72 50.31

of Reference [51], in general, generates the best results, while the BTES algorithm ranks
the second and outperforms algorithm presented in References [56] and [58] by producing
lower RMSE. However, by investigating the classification results, we note that the BTES
approach performs the best, and gives higher classification accuracy than other CFA demo-
saicking methods. Algorithm of Reference [51] provides better classification performance
than algorithms in References [56] and [58], whose classification accuracy is much lower
than that of the original data. In summary, the BTES generic approach provides the high-
est classification accuracy although with a slightly worse RMSE performance compared to
algorithm of Reference [51].

6.6 Conclusions

The primary focus of this chapter is to present a robust and cost-effective solution for
multispectral digital cameras. The potential application of MSFA technique is investigated,
which uses a mosaic multispectral filter array to cover single CCD sensor resulting in a
mosaic-like image. The missing spectral components are reconstructed based on spectral
reconstruction algorithms. Two major issues, i.e., the design of MSFAs and the develop-
ment of effective interpolation algorithms, are discussed in this chapter. The binary tree-
driven MSFA generation process guarantees that the pixel distributions of different spectral
bands are uniform and highly correlated. These spatial features facilitate the design of the
generic demosaicking method based on the same tree, which considers three interrelated
issues: band selection, pixel selection and interpolation. The development of a generic al-
gorithm enables the cost-effective multispectral imaging. The experimental results demon-
strate that the mosaicking and demosaicking process preserves the classification accuracy
effectively for real world data. This result further supports that the MSFA technique is a
feasible solution for multispectral cameras.

Acknowledgment

Figure 6.5, Figure 6.10 to Figure 6.12, and Table 6.1 are reprinted from Reference [18],
Figure 6.6, Figure 6.7, and Table 6.2 to Table 6.8 are reprinted from Reference [19], with
the permission of IEEE.



178

Single-Sensor Imaging: Methods and Applications for Digital Cameras

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

P. Colarusso, L.H. Kidder, .W. Levin, J.C. Fraser, J.F. Arens, and E.N. Lewis, “Infrared spec-
troscopic imaging: From planetary to cellular systems,” Applied Spectroscopy, vol. 52, no. 3,
pp- 106A-120A, March 1998.

PJ. Curran, “Imaging spectrometry,” Progress in Physical Geography, vol. 18, no. 2, pp. 247—
266, June 1994.

G.A. Clark, S.K. Sengupta, W.D. Aimonetti, F.Roeske, and J.D. Donetti, “Multispectral image
feature selection for land mine detection,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 38, no. 1, pp. 304-311, January 2000.

J.S. Salazar, M.W. Koch, and D.A. Yocky, “A novel automatic target recognition approach
for multispectral data,” in Proceedings of the SPIE Conference on Imaging Spectrometry VII,
Seattle, Washington, July 2002, vol. 4816, pp. 222-241.

M.E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S.E. Fraser, “Multi-spectral imaging
and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,’
Biotechniques, vol. 31, no. 6, pp. 1274-1276, June 2001.

T. Haraguchi, T. Shimi, T. Koujin, N. Hashiguchi, and Y. Hiraoka, “Spectral imaging fluores-
cence microscopy,” Genes to Cells, vol. 7, no. 9, pp. 881-887, September 2002.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for
living cells,” Cell Structure and Function, vol. 27, no. 5, pp. 367-374, October 2002.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in
live cell microscopy,” Federation of European Biochemical Societies Letters, vol. 546, no. 1,
pp- 87-92, July 2003.

H. Qi and N.A. Diakides, “Thermal infrared imaging in early breast cancer detection-a survey
of recent research,” in Proceedings of the IEEE International Conference on Engineering in
Medicine and Biology Society, Cancun, Mexico, September 2003, vol. II, pp. 1109-1112.

H. Szu, L. Miao, and H. Qi, “Thermodynamic free-energy minimization for unsupervised
fusion of dual-color infrared breast images,” in Proceedings of the Independent Component
Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks IV at SPIE Defense
and Security Symposium, Orlando, FL, USA, April 2006, vol. 6247, pp. 62470P:1-15.

A. Abrardo, “Color constancy from mulitspectral images,” in Proceedings of the IEEE Inter-
national Conference on Image Processing, Kobe, Japan, October 1999, vol. 3, pp. 570-574.

H.M.G. Stokman, T. Gevers, and J.J. Koenderink, “Color measurement by imaging spectrom-
etry,” Computer Vision and Image Understanding, vol. 79, no. 2, pp. 236-249, August 2000.

M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and
N. Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging:
Experimental evaluation,” in Proceedings of the SPIE Conference on Color Imaging: Device
Independent Color, Color Hardcopy and Applications VII, San Jose, CA, USA, January 2002,
vol. 4663, pp. 15-26.

Y.Y. Schechner and S.K. Nayar, “Generalized mosaicing: Wild field of view multispectral
imaging,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 10,
pp- 1334-1348, October 2002.

R.B. Smith, “Introduction to hyperspectral imaging.” Available online: http://www.micro-
images.com/getstart/pdf_new/hyprspec.pdf, 2006.

D.A. Scribner, J. Schuler, and M.R. Kruer, “Infrared multispectral sensors: Re-considering
typical design assumptions.” Naval Research Lab., Code 5636, 1998.



Mosaicking and Demosaicking in the Design of Multispectral Digital Cameras 179

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

(36]

K. Parulski and K.E. Spaulding, Digital Color Imaging Handbook, ch. Color image processing
for digital cameras, G. Sharma (ed.), Boca Raton, FL: CRC Press, 2002, pp. 728-757.

L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked
multispectral filter arrays,” IEEE Transactions on Image Processing, vol. 15, no. 9, pp. 2780—
2791, September 2006.

L. Miao, H. Qi, R. Ramanath, and W.E. Snyder, “Binary tree-based generic demosaicking
algorithm for multispectral filter arrays,” IEEE Transactions on Image Processing, vol. 15,
no. 11, pp. 3550-3558, November 2006.

PI. Shnitser, I.P. Agurok, S. Sandomirsky, and A. Avakian, “Spectrally adaptive imaging cam-
era for automatic target contrast enhancement,” in Proceedings of the SPIE Conference on
Algorithms for Multispectral and Hyperspectral Imagery V, Orlando, FL, USA, April 1999,
vol. 3717, pp. 185-195.

D.H. Kim, K. Kolesnikov, A. Kostrzewski, G.S.A.A. Vasiliev, and M.A. Vorontsov, “Adaptive
imaging system using image quality metric based on statistical analysis of speckle fields,” in
Proceedings of the SPIE Conference on Hybrid Image and Signal Processing VII, Orlando,
FL, USA, April 2000, vol. 4044, pp. 177-186.

Y. Jiao, S.R. Bhalotra, H.L. Kung, and D.A. Miller, “Adaptive imaging spectrometer in a
time-domain filtering architecture,” Optics-Express, vol. 11, no. 17, pp. 1960-1965, August
2003.

“Adaptive focal plane array.” Available online: http://www.darpa.mil/mto/afpa/, 2003.

B.K. Gunturk, J. Glotzbach, Y. Altunbasak, and R.W. Schaffer, “Demosaicking: Color filter
array interpolation,” IEEE Signal Processing Magazine, vol. 22, no. 1, pp. 44-54, January
2005.

R. Lukac and K.N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE
Transactions on Consumer Electronics, vol. 51, no. 4, pp. 1260-1267, November 2005.

K. Hirakawa and P. Wolfe, “Spatio-spectral color filter array for enhanced image fidelity.” in
Proceedings of the IEEE International Conference on Image Processing, San Antonio, TX,
USA, September 2007, vol. I, pp. 81-84.

E.B. Bayer, “Color imaging array.” U.S. Patent 3 971 065, July 1976.

“Fillfactory: The color filter array faq.” Available online: http://www.fillfactory.com/htm/
technology/htm/rgbfaq.htm.

“Sony press release.” Available online: http://www.sony.net/SonyInfo/News/Press/200307/03-
029E/.

T. Yamagami, T. Sasaki, and A. Suga, “Image signal processing apparatus having a color filter
with offset luminance filter elements.” U.S. Patent 5 323 233, June 1994.

J.F. Hamilton, J.E. Adams, and D.M. Orlicki, “Particular pattern of pixels for a color filter
array which is used to derive luminance and chrominance values,” U.S. Patent 6 330 029 B1,
December 2001.

E.B. Gindele and A.C. Gallagher, “Sparsely sampled image sensing device with color and
luminance photosites,” U.S. Patent 6 476 865 B1, November 2002.

O. Packer and D.R. Williams, The Science of Color. Amsterdam, Boston: Elsevier, 2003.

S. Otake, P.D. Gowdy, and C.M. Cicerone, “The spatial arrangement of 1 and m cones in the
peripheral human retina,” Vision Research, vol. 40, no. 6, pp. 677-693, March 2000.
A.Roorda, A.B. Metha, P. Lennie, and D.R. Williams, “Packing arrangement of the three cone
classes in primate retina,” Vision Research, vol. 41, no. 10-11, pp. 1291-1306, May 2001.
A.S. French, A.W. Snyder, and D.G. Stavenga, “Image degradation by an irregular retinal
mosaic,” Biological Cybernetics, vol. 27, no. 4, pp. 229-233, December 1977.



180

[37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

Single-Sensor Imaging: Methods and Applications for Digital Cameras

M. Siuta, “Color vision in fish.” Available online: http://instructl.cit.cornell.edu/courses/
bionb424/students2004/mas262/neuroanatomy.htm.

G.S. Losey, T.W. Cronin, T.H. Goldsmith, and D. Hyde, “The UV visual world of fishes: A
review,” Journal of Fish Biology, vol. 54, no. 5, pp. 921-943, May 1999.

P.A. Raymond, L.K. Barthel, and G.A. Curran, “Developmental patterning of rod and cone
photoreceptors in embryonic zebrafish,” Journal of Comparative Neurology, vol. 359, no. 4,
pp- 537-550, September 1995.

S. Thoya, A. Mochizuki, and Y. Iwasa, “Formation of cone mosaic of zebrafish retina,” Journal
of Theoretical Biology, vol. 200, no. 2, pp. 231-244, September 1999.

Y. Fei, “Development of the cone photoreceptor mosaic in the mouse retina revealed by fluo-
rescent cones in transgenic mice,” Molecular Vision, vol. 9, no. 6, pp. 31-42, February 2003.

M.A. Raven and B.E. Reese, “Mosaic regularity of horizontal cells in the mouse retina is inde-
pendent of cone photoreceptor innervation,” Investigative Ophthalmology and Visual Science,
vol. 44, no. 3, pp. 965-973, March 2003.

N. Keshava, “Best bands selection for detection in hyperspectral processing,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix,
AZ, USA, May 2001, vol. V, pp. 3149-3152.

S.B. Serpico and L. Bruzzone, “A new search algorithm for feature selection in hyperspectral
remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7,

pp. 1360-1367, July 2001.

J.C. Price, “Spectral band selection for visible-near infrared remote sensing: Spectral-spatial
resolution tradeoffs,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 5,
pp. 1277-1285, September 1997.

T.M. Tu, C.H. Chen, J.L. Wu, and C.I. Chang, “A fast two-stage classification method for high-
dimensional remote sensing data,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 36, no. 1, pp. 182-191, January 1998.

S.G. Bajwa, P. Bajcsy, P. Groves, and L.F. Tian, “Hyperspectral image data mining for band
selection in agricultural applications,” Transactions of the American Society of Agricultural
Engineers., vol. 47, no. 3, pp. 895-907, May / June 2004.

S.W. Grotta, “Anatomy of a digital camera: Image sensors,” Available online: http://www.
extremetech.com/article2/0,3973,15465,00.asp, June 2001.

D. Cok, “Signal processing method and apparatus for producing interpolated chrominance
values in a sampled color image signal.” U.S. Patent 4 642 678, February 1987.

R. Lukac, K. Martin, and K.N. Plataniotis, “Demosaicked image postprocessing using local
color ratios,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 6,
pp- 914-920, June 2004.

W. Lu and Y.P. Tan, “Color filter array demosaicking: New method and performance mea-
sures,” IEEE Transactions on Image Processing, vol. 12, no. 10, pp. 1194-1210, October
2003.

K. Hirakawa and T.W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE
Transactions on Image Processing, vol. 14, no. 3, pp. 360-369, March 2005.

P. Scheunders, “An orthogonal wavelet representation of multivalued images,” IEEE Transac-
tions on Image Processing, vol. 12, no. 6, pp. 718-725, June 2003.

H.J. Trussell and R.E. Hartwig, “Mathematics for demosaicking,” IEEE Transactions on Im-
age Processing, vol. 11, no. 4, pp. 485-492, April 2002.

X. Li and M.T. Orchard, “New edge-directed interpolation,” I[EEE Transactions on Image
Processing, vol. 10, no. 10, pp. 1521-1527, October 2001.



Mosaicking and Demosaicking in the Design of Multispectral Digital Cameras 181

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

(71]

B.K. Gunturk, Y. Altunbasak, and R.M. Mersereau, “Color plane interpolation using alter-
nating projections,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 997-1013,
September 2002.

X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for digital cam-
eras,” IEEE Transactions on Image Processing, vol. 13, no. 9, pp. 1263—1274, September
2004.

X. Li, “Demosaicing by successive approximation,” IEEE Transactions on Image Processing,
vol. 14, no. 3, pp. 370-379, March 2005.

R. Kimmel, “Demosaicing: Image reconstruction from color ccd samples,” IEEE Transactions
on Image Processing, vol. 8, no. 9, pp. 1221-1228, September 1999.

S.C. Pei and L.K. Tam, “Effective color interpolation in CCD color filter arrays using signal
correlation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 6,
pp- 503-513, June 2003.

X. Wu, WK. Choi, and P. Bao, “Color restoration from digital camera data by pattern match-
ing,” Proceedings of the SPIE, vol. 3018, pp. 12—17, April 1997.

L. Chang and Y.P. Tan, “Effective use of spatial and spectral correlations for color filter array
demosaicking,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 355-365,
February 2004.

J. Driesen and P. Scheunders, “Wavelet-based color filter array demosaicking,” in Proceedings
of the IEEE International Conference on Image Processing, Singapore, October 2004, vol. V,
pp- 3311-3314.

L. Chen, K.H. Yap, and Y. He, “Color filter array demosaicking using wavelet-based subband
synthesis,” in Proceedings of the IEEE International Conference on Image Processing, Genoa,
Italy, September 2005, vol. II, pp. 1002—-1005.

V.I. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals,”
Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845-848, 1965.

R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-Interscience, 2000.

“Laboratory for applications of remote sensing.” Available online: http://www.lars.pur-
due.edu.

D. Landgrebe, “Multispectral data analysis: A signal theory perspective.” Available online:
http://dynamo.ecn.purdue.edu/ biehl/MultiSpec/Signal _Theory.pdf, 1998.

D. Landgrebe, “Multispectral data analysis: A moderate dimension example.” Available on-
line: http://dynamo.ecn.purdue.edu/ biehl/MultiSpec/Moderate_Dimension.pdf, 1997.

R. Ramanath, A Framework for Object-characterization and Matching in Multi- and Hyper-
spectral Imaging Systems. Ph.D. thesis, North Carolina State University, 2003.

R. Ramanath, W.E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” in
Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, USA, April 2004,
vol. 5406, pp. 701-712.






7

Color Filter Array Sampling of Color Images:
Frequency-Domain Analysis and Associated
Demosaicking Algorithms

Eric Dubois

7.1 INrodUuCtion .......o.oi i 183

7.2 Geometric Structure of the Color-Filter Array ...................oooiiiia... 184

7.3 Formation and Representation of the CFA Image .............................. 186

7.3.1 Formation of the CFAImage ...............c.oiiiiiiiiiiiiiiiiiin... 186

7.3.2 Frequency-Domain Representation of the CFA Image ................... 186

7.3.3 EXaMPLES ..ot e 191

7.3.3.1 Hexagonal Pattern ............ . .. i 191

7.3.3.2 Diagonal Stripe Pattern ......... ... ... .o i 193

7.3.3.3 Four-Color Pattern ..............c.ooiiiiiiiiiiiiiiiiiiiinain.. 196

T34 SUMMATY . .onet e e 197

7.4 Demosaicking Based on the Frequency-Domain Representation ............... 198

7.4.1 The Demosaicking Problem ............. ... i, 198

7.4.2 Algorithms Derived from the Frequency-Domain Representation ........ 199

7.5 Filter Design for CFA Signal Demultiplexing .......................ooia... 203

7.6 Concluding Remarks ........ ..o 209

ACKNOWIEAZMENLS . ...t 209

Appendix: Lattices and Two-Dimensional Signals on Lattices ...................... 209

References ..........ooioiiii 211
I

7.1 Introduction

Color-filter-array (CFA) sampling of color images involves a spatial-domain multiplex-
ing of three or more color components of a color image, each on a subset of the lattice
consisting of all sensor elements. In the frequency domain, this same operation can be
viewed as the frequency-domain multiplexing of a luma component at baseband and two
or more chrominance components centered at certain spatial modulation frequencies. This
view leads to some very efficient demosaicking algorithms that would not normally be ev-
ident from the spatial-domain representation. This chapter presents the frequency-domain
representation for general periodic CFA structures and describes efficient demosaicking
algorithms based on spatial filtering derived from this representation.
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The chapter is organized as follows. Section 7.2 describes how the geometric structure
of a CFA pattern can be specified using the concepts of lattices, sublattices and cosets, and
represented using several matrices. Section 7.3 presents the model for the formation of the
CFA image and derives the frequency-domain representation for an arbitrary periodic CFA
pattern. Three specific examples are examined in detail in addition to the popular Bayer
CFA pattern. Section 7.4 then addresses the demosaicking problem and presents algorithms
inspired by the frequency-domain representation, namely frequency-division demultiplex-
ing of the luma and modulated chrominance components. The least-squares approach to
design the filters used in this demosaicking structure is given in Section 7.5 along with a
few examples. Some concluding remarks are given in Section 7.6. The theory of lattices is
extensively used in this chapter. A summary of the main notation and properties required
is presented in the appendix; more details can be found in References [1] and [2].

7.2 Geometric Structure of the Color-Filter Array

In typical image sensors such as the charge-coupled devices (CCDs), the image window
W is partitioned into a set of sensor elements of the same shape, usually rectangular. Each
of these sensor elements is assigned to one of C classes, according to the characteristics
of an optical filter placed over that sensor element. For example, the conventional Bayer
CFA has three classes, corresponding to red (R), green (G) and blue (B) filters. The sen-
sor elements are assumed to lie on a lattice A, and the shape of each sensor element is a
subset of a unit cell & of A. The sensor elements are slightly smaller than the unit cell
to allow for wiring, but this effect will be ignored without loss of generality in this pre-
sentation. A general description of CFA sensors and some specific CFA patterns can be
found in References [3] and [4], and an evaluation of several RGB CFA patterns is given
in Reference [5]. Several authors have used stacked-matrix formulations to describe CFA
patterns (e.g., References [6] and [7]), but in this chapter we give a presentation based on
lattices. Figure 7.1 illustrates the setup for the Bayer structure, showing the upper-left cor-
ner of the image window. The lattice A is a rectangular lattice with equal horizontal and
vertical sample spacing X, and the unit cell & is a square of size X x X. The origin of the
coordinate system is placed at the center of the upper-left sensor element, with the y-axis
pointing downward. To simplify notation, the unit-cell dimension X is taken as the unit of
length, called the pixel height (px), i.e., X = 1 px. With this choice, the lattice A is simply
the integer Cartesian lattice Z.

The CFA pattern is assumed to be regular and periodic, as most are. The present develop-
ment does not apply to non-periodic CFA structures, such as non-periodic pseudo-random
structures, but it does apply to periodic ones (see Reference [8] for an example of a periodic
pseudo-random CFA). One period of the pattern is replicated on the points of a sublattice I"
of A. The number of sensor elements in one period is equal to the index of I" in A, denoted
K = (A :T). For the example of Figure 7.1, we have I = (27)?, and (A : ") = 4; one period
is indicated by the heavy square in the upper left. Each sensor element in the basic period
corresponds to one coset of I' in A. We denote the coset representatives belonging to this
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FIGURE 7.1

Upper-left portion of the Bayer CFA sampling structure, showing the constituent sampling structures Wg (0O),
We (o) and ¥p (A). The union of these three sampling structures forms the lattice A.

basic period as by, k=1,...,K; the corresponding cosets are by +1",k=1,..., K. The set of
coset representatives can be compactly represented with a 2 x K matrix B = [b; b, ... bg].
For the Bayer lattice of Figure 7.1, we can choose by = [0 0]7, by = [1 0], b3 = [0 1],
by = [1 1]7. Each sensor class is associated with one or more of these cosets.

Let the sampling structure for sensor class i be denoted ¥; C A. By definition, A =
U,'Czl U; where the ¥; are disjoint subsets of A, ¥; W ; = @ for i # j. Each of the sampling
structures is a union of selected cosets of I' in A. If we define %; = {k | by € U}, then we
have

U= J (be+T). (7.1)

k€& ;
For the Bayer CFA, Bg = {2}, B = {1,4}, #p = {3}. We can then write explicitly
Up=(ba+T), ¥g=(b1+T)U(bs+T)=TU(bs+T), ¥g = (bs+T). There is no
unique choice of the b; but there is often a natural one, such as the one indicated above.
Also, the indexing of the coset representatives is arbitrary, but we choose by = 0. The
assignment of sensor classes to cosets can be summarized by a K x C matrix J defined by

1 ifje%

0 otherwise

In summary, the geometric structure of a CFA sensor is captured by the number of sensor
classes C, the sensor lattice A represented by a sampling matrix V,, the CFA periodicity
lattice I" represented by a sampling matrix Vr, and the matrix J assigning sensor classes to
cosets of " in A.
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7.3 Formation and Representation of the CFA Image
7.3.1 Formation of the CFA Image

Assume that f(x,A) is the spectral light intensity (irradiance) projected at position x on
the plane containing the image sensor by an ideal (pinhole) optical system. A single value
fcra[X] is measured at each point of AN %/, and is approximated by

Amax
fCFA[x]:/ -8 Aha()dsei(A)dA, xe LN i=1....C.  (13)
in R

The spatial convolution with A, accounts for both blurring by the optical system and
integration of the optically / spectrally-filtered light irradiance over one sensor element.
The filters placed over sensor elements of class i have spectral transmission curve ¢;(4),
which would also include the effect of any global filter placed in the optical path that affects
all classes. It is assumed that all the filters have negligible transmission below A, and
above Amax Which correspond to the spectral limits of the human visual system. A typical
set of filter spectral responses for RGB can be found in Reference [4]; these responses
include a global infrared-stop filter. Note that the measurement of image values may also
include a pointwise nonlinearity such as gamma correction [9]. We do not account for such
nonlinearities in this chapter since they do not strongly influence the demosaicking process,
but a system designer must be aware of them and handle them correctly.

We define f;[x] to be the component corresponding to the i"" sensor class, defined on the
entire lattice A,

'A'max "
fi[x]:/_ [ Fx=s.A)h(9)dsci(A)dh, xEANW i=1...C. (14

Of course, the signal f;[x] is not measured or available off ¥, i.e., on the points A\¥;, and
it is necessary to estimate f;[x] at these points. The CFA signal can be expressed as

c
feealx] =Y filx]mi[x], (7.5)
i=1
where m;[x] is the indicator function for ;,
1, ev;;
m =4 *= (7.6)
0, xe A\\I’,

This model for the formation of the CFA signal is illustrated in the top portion of Figure 7.2.

7.3.2 Frequency-Domain Representation of the CFA Image

Each of the m;[x] is a periodic function on A, with periodicity given by I (i.e., m;[x+y] =
m;[x] for all y € I'), and so can be expressed as a discrete Fourier series. Since I is a
sublattice of A, there is an inverse relationship for the reciprocal lattices, namely A* C I'*,
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FIGURE 7.2

Block diagram of CFA camera (top) and ideal camera for human observer (bottom).

with (I : A*) =K. Let {dy,...,dg} be a set of coset representatives for the K cosets of A*
in '™, with D the 2 x K matrix D =[d; d; .. .dk]. Again, this choice of coset representatives
is not unique, but we choose d; = 0 and choose the others to lie in a Voronoi unit cell of
A*. Then, the discrete Fourier series representation of n;[x] is given by [2]:

K
m;[x] = Z My;exp(j2nx-dy) (7.7)
k=1
where
1 K
Mii = & Y mib;lexp(—j27b; - dy). (7.8)
j=1

We can limit the sum to the non-zero terms only,
1 :
My =— Y exp(—j2zb;-dy). (7.9)
JEB;
We can equivalently define the binary matrix J of Equation 7.2 by [J];; = m;[b;]; then we

can define the matrix M = [M};] by

M= %[exp(— j2nD'B)|J (7.10)

where the exponential of the matrix is carried out term by term, and postmultiplication by
J is matrix multiplication.
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With this representation, we can express the CFA signal as

9}

Jeralx ZZf ZMkzeXP(JZﬂX di)

(ZMkzﬁ ) exp(j27x - dy)

I
Ma I Mw X

[x] exp(j27x - dy)

k:l
K
=Y nlx] (7.11)
k=1
where we have identified the new signals
C
x| =Y Miifilx, k=1,....,K, or (7.12)
i=1
q[x] = Mf[x], (7.13)

which are different linear combinations of the original components. Here, q[x] =
[q1[X]...qk[x]]" and f[x] = [f1[x]... fc[x]]". The ri[x] = qi[x]exp(j27x - dy) are the mod-
ulated versions of these components. The matrix M represents a linear transformation from
R€ to RX, where C < K. If C = K, this transformation is invertible using the matrix inverse.
If C < K, the transformation can be inverted using the pseudo-inverse [10] as follows:

flx] = (M"M)~'M"q[x] = M'q]x], (7.14)

where H denotes conjugate transpose of a matrix (the conjugate must be used if M is
complex). This expression gives the least-squares estimate if q is not in the range (column
space) of the matrix M.

Taking the Fourier transform of Equation 7.11, and using the standard modulation prop-
erty,

K
Feea(u Z (u—dy). (7.15)

Noting that d; = 0 and that the other d; are non-zero, the CFA signal is the sum of ¢ [x]
at zero frequency (DC) and each of the g[x] modulated at non-zero frequency d;. The
DC (or baseband) component g [x]| has a particularly simple form, since d; = 0. From

Equation 7.9,
_ 1 Z exp(0

where |%;| represents the number of elements in the set %;. In other words, the baseband
component is a weighted sum of the original components, where the positive weights are
the relative sampling densities of the corresponding components. Since the sum of these
weights is 1.0, we see that if all the input components are equal, then the baseband compo-
nent is equal to the CFA signal, which is the same as all the individual input components.

I%\

(7.16)
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FIGURE 7.3
Reciprocal lattices A* (o) and I'* (x) and a suitable choice of representatives for the cosets of A* in I'* for the

Bayer sampling structure.

This formulation has already been reported for the Bayer RGB CFA mosaic [11], which
is a simplification of an equivalent formulation previously reported in Reference [12]. In
general, a CFA signal is characterized in the frequency domain by the set of modulating
frequencies {dy,k = 1,...,K} and the matrix M = [M},] that defines the transformed com-
ponents via the matrix equation q[x] = Mf[x], which are all determined from the geometric
structure of the CFA pattern. Viewed from the frequency domain perspective, the CFA
signal is equivalent to a frequency division multiplexing of the g,[x]. The implied demo-
saicking algorithm involves separating these components and then obtaining the desired
components by a matrixing operation.

The above development can be illustrated by continuing the example of the Bayer RGB
CFA to reproduce the results presented in Reference [11], but with the notation of this
chapter. The coset representatives of I' in A were given above, resulting in

S O

O =
— O

(7.17)

—_
| S

The reciprocal lattices are easily seen to be A* = Z2 and I'* = (%Z)Z. Figure 7.3 illustrates
these reciprocal lattices and a suitable choice of coset representatives for A* in I'*, yielding
the matrix

=}
Il
= O

[NSTE ST

] ) (7.18)

(]
S D=
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The matrix J defining the three input channels is

010

100

I= 001

010

so that application of Equation 7.10 yields

12 1
I1(-1 0 1
M=21 101
-1 2 -1

1 -1 1 -1
Mi=|1 0 0 1
1 1 =1 -1

f2X] = q1[x] + ga[x]
SI¥ = a1[x] + q2[x] — g3[x] — ga[x].
Imposing the constraint g3 [x] = —g»[x], this simplifies to
Silx] = q1[x] = 2q2[x] — ga[x]
SalX] = g1 [x] + ga[x]
S31X] = @1[x] +242[x] — qa[x].

(7.19)

(7.20)

(7.21)
(7.22)
(7.23)
(7.24)

(7.25)

(7.26)
(7.27)
(7.28)

(7.29)
(7.30)
(7.31)

These four transformed signals are modulated at the frequencies (0.0,0.0), (0.5,0.0),

(0.0,0.5) and (0.5,0.5) (obtained from D), so that

Fera(u,v) = Q1(u,v) + Q2 (u—0.5,v) — Q2 (u,y = 0.5) + Q4(u — 0.5,y = 0.5).

(7.32)

We note that there are two separate and independent copies of Q»(u,v) at (0.5,0.0) and
(0.0,0.5) respectively. The input components fj, f> and f3 correspond respectively to f,
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FIGURE 74

Two-dimensional power density spectrum estimate of a CFA image with the Bayer sampling structure.

fc and fp in Reference [11], and the output components g1, g and g4 correspond respec-
tively to f7, fc» and fr1. One period of the two-dimensional power-density spectrum of a
sample CFA image with the Bayer CFA structure is shown in Figure 7.4. This spectrum is
obtained using the method of averaging modified periodograms [2]. The different compo-
nents are easily identified on this figure; compare with Figure 7.3. This spectral diagram
also serves to explain the artifacts commonly seen when Bayer CFA images are demo-
saicked [12]. High-frequency luma patterns intrude into the chrominance bands, resulting
in false colors. High-frequency chrominance information intrudes into the luma band, re-
sulting in false luma patterns, often having a zipper-like appearance. These effects are very
similar to the luma-chrominance crosstalk familiar in NTSC and PAL composite television
signals [13].

7.3.3 Examples

To illustrate these concepts, three additional examples of CFA structures that have been
proposed are presented. There is no implication that these are the best of the many proposed
structures; rather, they have been selected because they illustrate different scenarios. These
structures are: i) a hexagonal array, as used in the Super CCD proposed and manufactured
by Fujifilm, that is like a Bayer pattern rotated by 45° and has much in common with the
Bayer example already presented [3]; ii) a diagonal stripe pattern with C = K = 3 [8]; and
iii) a four-color pattern with C = K = 4.

7.3.3.1 Hexagonal Pattern

The first example concerns a sensor where the sensor elements are placed on a hexagonal
lattice. This has been referred to as the pixel interleaved array CCD (PIACCD) or as the
SuperCCD [3]. The lattice and CFA structure are shown in Figure 7.5. The Voronoi unit cell
has a square shape (rotated by 45°), but the PIACCD sensor elements are in fact octagonal-
shaped subsets of the unit cell. Again, this detail does not affect our analysis; it simply
contributes to the precise form of /,(x). This sampling structure is seen to be equivalent to
a Bayer structure rotated by 45°, so there are C = 3 sensor classes and K = 4 elements in
a period of the CFA. One period used here is outlined by the thick border in the top left of



192 Single-Sensor Imaging: Methods and Applications for Digital Cameras

\ Ao

FIGURE 7.5

PIACCD CFA structure showing the constituent sampling structures W (0), ¥ (o) and Up (A). The union
of these three sampling structures forms the lattice A.

Figure 7.5. We use the distance X indicated in Figure 7.5 as the unit of length (1 px) in the
following. Typically, the demosaicked signal on A would be upsampled to a square lattice
with spacing X, but we do not consider that step here.

By inspection of Figure 7.5, we identify

21 4 2
e (B), (). o3

010

0213 010
B_[OOIJ’ and J= 100 (7.34)

001

The corresponding reciprocal lattices can be found to be
. 105 . 0.5 0.25

vowe((0F) rou([002). os

These lattices are illustrated in Figure 7.6. Then, we choose the set of coset representatives
for A* in I'* as indicated in the figure, yielding the matrix

- [0 02 03]
Substitution into Equation 7.10 gives the matrix
2 1
M:% B} (2) _i , (7.37)
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FIGURE 7.6

Reciprocal lattices A* (o) and I'* (x) and a suitable choice of representatives for the cosets of A* in I'* for the
PIACCD structure.

and the resulting transformed signals

a1[x] = 1/ [x]+ 3L + 3 (X (7.38)
X = =1 filx] + 3 HX] - 1 /K] (7.39)
¢ [xX] = — LA+ 1A[x] (7.40)
qalx] = 3 filx] — 3 f5[x] (7.41)
where we note that g4 = —g3. In the frequency domain, we have
Fepa(u,v) = Q1(u,v) + Q2(u—0.5,v)
+03(u—0.25,v —0.25) — Q3(u—0.25,v40.25). (7.42)

7.3.3.2 Diagonal Stripe Pattern

The second example is a diagonal stripe pattern that contains C = 3 sensor classes (RGB)
and only K = 3 elements in a period of the CFA structure. A portion of this CFA pattern
using the same structure as Reference [8] is shown in Figure 7.7. Again, with X as the unit
of length, we identify

_ 1O\ .» - 31
() -z rem(B) w 0w
|

012
00 0} (7.44)
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FIGURE 7.7

Stripe RGB CFA structure showing the constituent sampling structures Wg (O), ¥ (o) and ¥ (A). The union

of these three sampling structures forms the lattice A.

The matrix J defining the CFA structure is

100
J=1001
010

The corresponding reciprocal lattices

A* = LAT . T*=LAT
01 0

W= W=

)

(7.45)

(7.46)

are illustrated in Figure 7.8 along with a suitable choice of coset representatives for A* in

I'*, giving

D:

11
0 3 —3]
11
0 -3 3
Substitution into Equation 7.10 gives the matrix

H
|

(7.47)

(7.48)

(7.49)
(7.50)

(7.51)
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FIGURE 7.8

Reciprocal lattices A* (o) and I'* (x) and a suitable choice of representatives for the cosets of A* in I'* for the

stripe structure.

We see that ¢»[x] and ¢3[x| are complex and that g3[x] = ¢5[x]. The inverse transformation
recovers the original components using the matrix M~!,

1 1 1
M= |1 =58 4+ (7.52)
R R
In the frequency domain
Feea(u,v) = Q1(u,v) + 0o (u—5,v+3) + Qs(u+5,v—3). (7.53)

Although there is no problem with this complex formulation, we can avoid the use of
complex signals by expressing the modulation as a quadrature modulation of real signals.
Thus, rather than considering the two complex modulated signals

@[x]exp (=27 (5 - §)) +as[xexp (—2m (=5 +3)). (7.54)

we can consider the equivalent real, quadrature modulated signals

gr[x]cos (27 (5 —3)) +g5[x]sin (27 (3 —3)) (7.55)
where

X =2R{qx[x]} = 3 /1[x] - 3 2[x] - 355X (7.56)

Bx) = 23{aalx]} = Lol — Lol .57

and where R and S extract the real and imaginary part of a complex number.
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FIGURE 7.9

Two-dimensional power density spectrum estimate of a CFA image with the stripe sampling structure.

One period of the two-dimensional power density spectrum of a sample CFA image with
the stripe CFA structure is shown in Figure 7.9. The different components are easily iden-
tified on this figure; compare with Figure 7.8.

7.3.3.3 Four-Color Pattern

The final example considers a four-color pattern as illustrated in Figure 7.10. A number
of these have been proposed in recent years including CMYB [14], RBG1G2 [15], RGB +
gray [16] and the RGB + Emerald as used in the Sony Cybershot DSC-F828 digital camera.
In this case, C = K = 4. The lattices A = Z? and I" = (27Z)? are the same as for the Bayer
structure and the same matrix B can be used. The matrix J is the 4 x 4 identity matrix
I;. The reciprocal lattices A* = Z? and I'* = (%Z)Z are again the same as for the Bayer
structure and the same D can be used, so Figure 7.3 applies to this case.

+=X| x A x

yv

FIGURE 7.10

Four-color CFA structure showing the constituent sampling structures Wy (o), U5(0), ¥3 (A) and Wy (x). The

union of these four sampling structures forms the lattice A.
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Applying Equation 7.10 to the above, we obtain

1 1 1 1

{1 1 -1 -1
M=21r 1 11 (7:58)

1 -1 -1 1

the transformed signals

q1x] = %fl [x] + ifz[x]—i—%fg[x]—i—iﬁ;[x] (7.59)
@[x] = 1 fil}] + 3 [x] - 1 f5[x] = 2 falx] (7.60)
@3[x] = 3f1x] = 3 X + 1 5[] - 1 falx] (7.61)
qalx] = 3/1[x] = 12 x] — 3 3[x] + 3 falx] (7.62)

and in the frequency domain
Fora(u,v) = Q1(u,v) + 02(u—0.5,v) + Q3(u,v—0.5) + Q4 (u—0.5,v—0.5).  (7.63)

We need to know what the four signals (sensor classes) are to proceed further. Note that if
c1(A) = ca(1), we revert to the case of the Bayer array.

7.3.4 Summary

The analysis in this section has shown that the spatial multiplexing of pixels correspond-
ing to different sensor classes, such as red, green and blue, can be equivalently viewed as
the frequency domain multiplexing of transformed components obtained as linear combi-
nations of the original input components. These components generally consist of a luma
at baseband and several chrominance components modulated at certain frequencies. The
baseband component is a weighted average of the input components, where the weights are
the relative sampling densities of the given components. This baseband component is sim-
ilar to the luminance component of human vision, which arises in a similar fashion from
the retinal mosaic of cones [12]. Since this baseband component is not luminance, we use
the term [uma as advocated by Poynton [9]. The chrominance components are various dif-
ferences of the input components, and all are identically zero in the case where the inputs
from all sensor classes are equal (a gray-scale condition for these sensor classes).

The analysis presented shows how to use lattice theory to determine these transformed
components and the frequencies at which they are modulated. The interested reader can
apply the analysis to the other RGB CFA patterns of [5]. The author’s analysis can be
found at the companion webpage for this chapter [17]. The next section shows how these
components can be demultiplexed using spatial filtering and subsequently transformed to
yield the desired tristimulus values at all points on the sampling lattice, as required to
further process and display the image.

As seen in Section 7.3.3.2, some of the transformed chrominance components may be
complex. However, this can be avoided by using the quadrature modulation representation.
For any coset representative d; of A* in I'*, there are two possible situations, that cor-
respond to real and complex chrominance components respectively. The first situation is
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when d; and —d; belong to the same coset, i.e., dy — (—d;) € A*, or equivalently 2d; € A*.
This always applies to d; = 0, but it also applies to all the d; for the Bayer structure and for
Sections 7.3.3.1 and 7.3.3.3. Since d; and —d; must give the same result in Equation 7.10,
it follows that My; = M;;,i=1,...,C, and so g; = g. Thus all chrominance components for
these CFA structures are real. In the second situation, —d; ¢ d; + A*, and so —d; € d; + A*
for some / # k. Thus M;; = M;; fori=1,...,C and ¢q; = g;. The corresponding two terms

in Equation 7.11 can be written as
qr[x]exp(j27x - di) + g [x] exp(—j27x - dy) = g cos(2wx - di) + ¢)sin(2wx - d;) (7.64)

where ¢}, = 2R{qx[x|} and ¢) = 23{q[x]}. Note that g} and g are still linear combinations
of the original components.

7.4 Demosaicking Based on the Frequency-Domain Representation
7.4.1 The Demosaicking Problem

The digital camera with CFA sensor is an approximation to the ideal camera, whose ob-
jective is to accurately capture spatial color patterns to be reproduced for a human observer
on a color display device. The bottom part of Figure 7.2 shows a model of an ideal camera
designed to produce sampled color images for human viewing. The spatio-spectral light
intensity is passed through a linear shift invariant spatial camera aperture /,(x), with fre-
quency response H;(u), that is adapted to the sampling lattice A and possibly the assumed
viewing setup [18]. The resulting signal is passed through three spectral filters p;(4),
i =1,2,3, that correspond to three primaries P, Py, P3 of the human visual color space,
and the total power is measured to produce the samples on A. This yields the vector signal
f[x], x € A, with three components

5 Amax
ﬁ[x]:/_ /sz(x—s,l)h,(s)dsﬁi(l)dl, i—1,2,3. (7.65)

The functions p;(A) are known in colorimetry as color-matching functions, and are a prop-
erty of the human visual system [19]. The three components fi[x],i =1,2,3 are called
tristimulus values with respect to the given primaries. The problem at hand is to estimate
f'[x] for x € A from the observed scalar signal fcpa[X].

This is an ill-posed inverse problem with at least three separate aspects: (i) Only one
component is measured at each spatial location and two others must be estimated. This
operation is often called demosaicking or color-plane interpolation. (ii) The actual aperture
hq(x) is different from the ideal one /,(x) and may introduce excessive resolution loss;
compensating for this is image restoration or aperture correction. (iii) The p;(A) cannot
be expressed as a linear combination of the actual recording filters ¢;(A ), thus introducing
color errors. In this case, which is the normal situation, the camera filters are said to be
non-colorimetric. In this chapter, we concentrate on the demosaicking problem. We do not
consider aperture correction (which must also account for noise in the capture process), and
standard solutions for the color error problem are used.
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Consider for now only the color aspect of the problem. In the ideal situation, the spectral
responses of the color filters for the C classes span a space that contains the color-matching
functions:

pi(A) e span({c;j(A),j=1,...,C}), i=1,2,3. (7.66)

In this case, we can express these functions as linear combinations of the c¢;(1),
c
pi(A) =) aijcj(A), =123, (7.67)

where the g;; are unique if the cj(A) are linearly independent, which is a reasonable as-
sumption in practice. Then, the tristimulus values for a color with spectral distribution
f(A) are given by

mdx

fi= FA)pi(A)dA = Za,j /zm A)ej(A)dA, (7.68)

Amax
in

so that the desired tristimulus values can be obtalned from the values measured with the
given color filters as
f=Af (7.69)

where A = [g;;] is the 3 x C matrix implied by (7.67) and [f]; = [ f(A)ci(A)dA. The
primaries for the desired signal could be the CIEXYZ primaries for a device-independent
representation, or some standard RGB space such as the ITU Recommendation 709 RGB
primaries [9], also used in the SRGB representation.

However, in the practical situation,

pi(A) & span({c;(A),j=1,...,C}), i=12,3, (7.70)

so that color errors are inevitable. In particular, two different but metamerically equivalent
color spectra with equal tristimulus values will in general give different measured values,
while visually different colors can give the same measured values. Essentially the human
and camera visual systems are different. In this case, a transformation mapping f to f is
required, that should minimize the expected color error according to an appropriate color
distance metric over some suitable ensemble of spectral densities f(A4) [20]. Although the
best such transformation is not necessarily linear, it has been found that linear transforma-
tions can give excellent results. See Reference [21] for a review of standard techniques to
solve the problem. A typical one is to project the p;(4) onto span({c;(1),j =1,...,C}
and to use the projected color-matching functions to compute the approximate tristimulus
values. Thus, we will still assume that the desired tristimulus values are obtained from the
measured values using Equation 7.69 and that this is the desired signal we are trying to
measure. The resulting colorimetric errors are not considered further in this chapter.

7.4.2 Algorithms Derived from the Frequency-Domain Representation

The premise of the demosaicking algorithms based on the frequency-domain represen-
tation is to extract the luma and modulated chrominance components from the CFA signal
using spatial filters, and then to transform the luma and demodulated chrominance compo-
nents to the desired estimated tristimulus values using the appropriate linear transformation.
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The specific structure of the CFA signal in the frequency domain should be exploited. For
example, with the Bayer structure, one component is modulated at two different frequen-
cies, and either can be used to reconstruct the signal. However, if locally one suffers from
crosstalk, the other is often relatively free of crosstalk. By adaptively selecting which of
the two candidates should be used, superior results can be obtained [11], [22].

The basic algorithm is derived from Equation 7.15. The CFA signal is passed through a
series of bandpass filters to extract the modulated chrominance components, which are de-
modulated to yield the estimated chrominance components. These are then linearly trans-
formed to give the required tristimulus values. Let Hi(u) be a two-dimensional linear
shift-invariant bandpass filter with center frequency d;. The shape of the passband would
depend on the expected support of the spectrum of the corresponding chrominance sig-
nal. Then, 7, = fcra * hg, and the resulting signal is demodulated to baseband to obtain
gr[x] = Fi[x]exp(—j2mx - di). The baseband luma component ¢;[x] at frequency d; = 0
does not need to be demodulated, and can be obtained by subtracting the estimated modu-
lated chrominance components from the CFA signal

g1[x] = feralx] Z Pi[x (7.71)

When C < K, the transformed components gy, are linearly dependent (e.g., ¢3[x] = —¢2[X]
for the Bayer CFA). Since the estimated transformed components obtained as above will not
in general satisfy this constraint (e.g., §3[x] # —§2[x]), the constraint needs to be imposed,
either explicitly or implicitly. This step is often the key to a successful result.

The approach is illustrated for the Bayer CFA structure of Figure 7.1. The global spec-
trum shows substantial overlap between both the modulated Q,(u —0.5,v) and Qs (u,v —
0.5), and the luma component at baseband, as can be seen from Figure 7.3. However, lo-
cally, the overlap tends to be only with one of these components and the luma, depending
on the local image content. This is illustrated schematically in Figure 7.11 which shows
the hypothesized local spectrum for two different scenarios. By identifying which of the
two versions locally has less crosstalk and using that one for reconstruction, a much better

Q Q Q
4 3 4 Q4 Q3 Q4
Q Q /Q%( Q, Q Q,
. T~
Q Q Q
! ’ vv ! Q, Q, vv Q,

(@) (b)
FIGURE 7.11

Local spectrum scenarios schematically illustrated for Bayer CFA pattern: (a) scenario with Q; being better

estimate, and (b) scenario with Q3 being better estimate.
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(2) (b)
FIGURE 7.12 (See color insert.)

Reconstruction of lighthouse image (a) using only Q(u — 0.5,v) and (b) using only O, (u,v—10.5).

result can be obtained than by using both of them equally. In fact, Figure 7.12 shows that
if the lighthouse image is reconstructed using only Q,(u — 0.5,v) (Figure 7.12a) and only
0> (u,v—0.5) (Figure 7.12b), all areas of the image are well reconstructed in one or the
other of these two images; we just need a genie to identify which one is better for each
pixel. Note in particular the house at the left where the first scenario applies, and the picket
fence where the second scenario applies.

—» analyze
A A A 4
rz q2a
_> h2 A A
. q, q "
b »
N (_l)nl/\ combine » _>f1
N s 3 ( ? D
Jcea
D" Cyn - -nym A matrix
Y e >/
A - A A
7 44 q, A
L) hy X > —> f,
(-1
FIGURE 7.13

Block diagram of adaptive demosaicking algorithm for the Bayer CFA structure.
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As described in Reference [11], we can make this decision by measuring the average
local energies ex and ey in the vicinity of the circular regions in Figure 7.11 centered at
frequencies (uy,,0) and (0,v,,). The direction (horizontal or vertical) with the lower energy
is assumed to suffer less from crosstalk and is given more weight in the reconstruction.
The proposed algorithm from Reference [11] with notation adapted to that of this chapter is
summarized below (Algorithm 7.1) and illustrated in Figure 7.13. Note that here, with x =
[n1 na)7, we have exp(+j27x-dy) = (—1)", exp(£j27x-d3) = (—1)", and exp(4j27x -
d4) — (—1)”1+”2.

ALGORITHM 7.1 Adaptive demosaicking algorithm for the Bayer CFA.

1. Filter fcpa with a bandpass filter 44 centered at frequency (0.5,0.5) to ex-
tract 74 = fcpa * ha, and shift it to baseband to estimate a[ny,nz] = f4[ny,ny) -
(~1yree.

2. Filter fcpa with hy to get 72 = fcpa * by and demodulate to baseband,
cjza[}’tl,nz] = f’z[}’tl,nz] . (—1)”1. Similarly, f3 = fCFA *h3 and cbb[nl,ng] =
—#3[n1,m2](—1)" (using g2 = —q3).

3. The local average energies ex and ey are estimated using modulated Gaussian
filters with standard deviations of rg; and rg, px along major and minor axes,
centered at frequencies (+u,,,0.0) and (0.0,+v,,) c/px respectively. The filter
at (0.0,£v,,) is the transpose of the filter at (£u,,,0.0). This is followed by
smoothing of the squared output with a 5 X 5 moving average filter.

4. The final estimate of ¢, is obtained as §[n,n2] = winy,na] - Goalni,n2] + (1 —
w(ny,n2])gap[n1,n2] using the weighting coefficient w = ey /(ex + ey ).

5. Estimate the luma by 4§ [nhng] = fcra [}’ll , nz] — 7y [}’ll , nz] — [nhng] ((=1)m —
(=1)™).

6. Estimate the RGB components fi, f>, f3 from 4, §» and g4 using Equa-
tions 7.29 to 7.31, and Equation 7.69 if needed.

A similar approach can be used for the PIACCD structure (Section 7.3.3.1), since in
this case there are two separate copies of the component g3. However, for the other two
examples of the stripe pattern (Section 7.3.3.2) and the four-color patterns (Section 7.3.3.3),
there is no duplication of components and all components are required to reconstruct the
image. Thus, the above approach is not directly applicable. The basic algorithm can be
used for the stripe pattern, while other approaches can be considered for the four-color
patterns.

We consider the stripe pattern of Section 7.3.3.2 in more detail to illustrate the case of
complex modulation. Using complex processing, a single complex filter 4, is required to
extract 7. The algorithm is straightforward (see Algorithm 7.2 and Algorithm 7.3).



CFA Sampling: Frequency-Domain Analysis and Associated Demosaicking Algorithms 203

ALGORITHM 7.2 Complex demosaicking algorithm for stripe CFA pattern.
1. Filter fcpa with a complex bandpass filter /, centered at frequency (%, —%) to

extract 7, = fcra *h2, and shift it to baseband to estimate g [n,n2] = f2[ny,n2] -
exp (=27 (5 —%))-

2. Estimate the luma component §; = fcpa — 2 — 75 = fora — 2R{/2 }.

3. Estimate §3 = §5.

4. Estimate the RGB components, fl, fz, fg from g1, 42, g3 using the inverse
matrix from Equation 7.52, and Equation 7.69 if needed.

ALGORITHM 7.3 Real version of the demosaicking algorithm for the stripe CFA

pattern.

hy = hag + jhor
¢a[n1,ny] = cos (271: ("T' — %2))
s7[n1,nz] = sin (277: ("3—1 — %2))
Par = fera * hor
a1 = fcra * oy
4y = fora — 2Pk
Gy =P co+Far 52
Gy = P52 — Py -2
h=a+24
h=a4—a— V34
f=d -+ V34

. ___________________________]

7.5 Filter Design for CFA Signal Demultiplexing

As presented in the previous section, the demosaicking methods based on the frequency-
domain representation require the use of two-dimensional bandpass filters centered at the
frequencies dg, k = 2,...,K. The design method for these filters is a crucial step for the
successful implementation of these demosaicking algorithms. In Reference [12], the use of
Gaussian filters has been proposed. Essentially, baseband Gaussian lowpass filters are first
generated using two parameters, the horizontal and vertical standard deviation. These low-
pass filters are then converted to bandpass filters by modulating the unit-sample response
with a complex sinusoid of the given frequency. Thus two parameters, and the support
of the filter, need to be selected. In Reference [11], the use of frequency selective filters
obtained with the window design method was presented. This was essentially a proof of
concept and used 21 x 21 filters. The results with that method gave better performance
than other methods known at that time for the Bayer structure when used with the adap-
tive algorithm described in the previous section. In Reference [22] it was shown that a



204 Single-Sensor Imaging: Methods and Applications for Digital Cameras

least-squares design method could give comparable or better results to the window method
described in Reference [11], but with much lower complexity. Thus, only the least-squares
methodology is presented in this chapter.

According to Equation 7.15, the observed CFA signal is the sum of K constituent mod-
ulated signals, each occupying a distinct frequency band, that we can estimate by a lin-
ear filter. Let ry represent any one of these signals, that we estimate by filtering fcpa
with the linear, shift-invariant filter having unit-sample response hy: 7y = fcpa *x hy. If
we assume that the difference between 7y and ry can be modelled as a stationary ran-
dom field, then we could choose Ay to minimize the expected squared error: hy =
argminy, E[(ry [n1,n2] — (fcpa *h)[n1,n2])?]. In practice, since we don’t have a good random
field model of the estimation error, we can minimize the actual error over a training set of
typical color images: this becomes a least-squares problem. Note that other approaches to
demosaicking using linear least-squares, Wiener filtering or similar techniques have been
presented in References [6], [7], [23], and [24].

Assume that we have a training set of color images for which all the desired sensor-class
components are available on the full lattice A. For each image in this training set, we
can form both the CFA signal and the desired signal ry at full resolution. Suppose that
we partition the training set into P sub-images, where the i sub-image is defined on the
spatial block # ()  A. Assume that the desired filter /y is a finite impulse response (FIR)
2D filter with region of support . C A. Then, the least-squares filter can be obtained as
solution to

i i 2
hy:argmlnz y (r;l)[m,nz}— Y ki, ko] fé’}ZA[m—kl,nz—kZD . (1.72)
=1 (ny,my)ew ) (k1 ko)ES

This expression can easily be cast in matrix form to simplify the solution with standard
matrix packages such as MATLAB@ Let Ng = || be the number of filter coefficients
to be determined, and Ny = |# ()| be the number of samples in the sub-images (the same
for all i). We form an Np X 1 column vector h from the filter coefficients by scanning the
region . in some fixed order, say column by column from left to right. Similarly, we

form an Ny x 1 column vector r(y) from r§,) [n1,n2] by scanning the plxels of #/() in a fixed

order. Finally, we form an Ny x Np matrix Z') from the elements of fCFA as follows: each
column of Z") corresponds to an element (k;,k») € .# scanned in the same order as used

to form h; this column is obtained by scanning the elements of f((:IE“A [n1 —ki,ny — ky] for
(i)

(n1,m) € # () in the same order used to form ry’. In this way, equation (7.72) can be
written in matrix form as

Lis .
hy = argmin )" 1ZOh — )2, (1.73)
i=1
This is a standard least-squares problem with solution [10]
-1
P P
' i=1

The result hy is then reshaped to give the desired filter iy [x].

hy =
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FIGURE 7.14

Frequency response of 11 x 11 filters designed by the adaptive least-squares method: (a) 4, (b) A3, and (c) h4.

For the Bayer structure, this approach can be used to determine the three filters h,, A3
and hy4 required in the adaptive frequency domain algorithm. Although it is probably quite
adequate for determining A4, it does not account for the adaptive nature of the algorithm
used to estimate ¢,. The following describes a least-squares algorithm to simultaneously
determine /i, and /3 to minimize the squared error in the estimation of ¢, with the adaptive
algorithm of Section 7.4.

Referring to the algorithm description, the estimate of ga[n;,n2] is obtained by

Galnim] =winpm](=1)" x Y haolki ko) feraln — ki, na — ko)
(kl,kz)ey

—(I=wln,m])(=1)> x Y hslki, ko] fepaln —ki,no —ka), (7.75)
(k],kz)ey

and we can choose hy and h3 jointly to minimize the total squared error between ¢, and
g» over the training set. Again, we cast this squared error in matrix form. Let hy3 be the
2Np x 1 column vector obtained by stacking hy on top of hs. The column vector qg) is
obtained by scanning the elements of ga[n;,n,] over # () in the same order as described
above. Finally, we form a Ny X 2Np matrix W) as follows: the first Npg columns are formed
by reshaping w'![ny,ns](— 1)”1f((:2A [n1 —ki1,ny — ks] for each (ky,kz) € . while the second
Np columns are formed by reshaping — (1 —w(® [n; ,nz])(—l)mféile [n1 —ki,ny — ky] in the
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FIGURE 7.15

Frequency response of 11 x 11 filters designed by the least-squares method for the stripe pattern: (a) /;, (b)
har, and () hoy.

same order. Once again, this leads to a least squares problem of the form

P .
hy; = argmin ) [Wh — a\|? (7.76)
i=1
P -1 P .
= [Z wo' W(i)] [Z w' qg>] . (7.77)
i=1 i=1

Finally, h, and hj are extracted from hys and reshaped to give the optimized filters A, [x]
and h3[x].

Figure 7.14 shows the frequency response of the filters obtained by applying these pro-
cedures, using Equation 7.74 to obtain A4[x| and Equation 7.77 to obtain &, x| and h3[x].
The training set consists of images 1-12 of the standard Kodak database commonly used to
test demosaicking algorithms [25], where all filters have a support of 11 x 11. As reported
in Reference [22], these filters give equivalent or better mean-squared error (MSE) than
the 21 x 21 window-designed filters of Reference [11], which in turn gave equal or better
MSE results than all the techniques compared in the review paper [25]. The results of de-
mosaicking the twenty-four Kodak images with these 21 x 21 filters used in the adaptive
algorithm can be seen on the website associated with Reference [11]. The results with the
least-squares filters are visually very similar.
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FIGURE 7.16 (See color insert.)

Portion of JPEG2000 test image bike, downsampled by four in each direction: (a) original color image, (b)
image reconstructed from Bayer CFA using bilinear interpolation, (c) image reconstructed from Bayer CFA

using the adaptive frequency demultiplexing algorithm, and (d) image reconstructed from the stripe CFA using
the least-squares frequency demultiplexing.

An extensive study, to be reported elsewhere, examined the effect of the various parame-
ters and filter support regions and identified good choices for these parameters. Specifically,
in step 3 of the algorithm, we recommend u,, = v,, = 0.375 c/px, rg1 = 3.0, rg2 = 1.0, and
a maximum support for the Gaussian filters of 11 x 3. Filters &, h3 and h4 have maximum
support of 11 x 11, as use of larger support gave no improvement in performance.

The least-squares design of Equation 7.74 can be applied directly to complex signals
without modification. This is illustrated for the stripe CFA pattern. Applying this design
algorithm to the Kodak dataset yields the complex filter #; whose magnitude response is
illustrated in Figure 7.15a. The constituent real and imaginary parts /g and hy; are shown
in Figure 7.15b and Figure 7.15c. While this pattern and filters give reasonable results, they
are in general inferior to the results obtained with the best adaptive algorithm used with the
Bayer pattern. However, certain areas are improved, such as the problematic picket fence
in the lighthouse image. This is to be expected from inspection of the spectral plots for the
two CFA patterns.
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FIGURE 7.17 (See color insert.)

Portion of Spincalendar: (a) original color image, (b) image reconstructed from Bayer CFA using bilinear
interpolation, (c) image reconstructed from Bayer CFA using the adaptive frequency demultiplexing algorithm,

and (d) image reconstructed from the stripe CFA using the least-squares frequency demultiplexing.

The frequency-domain approach can be illustrated with critical areas taken from two
standard images: a portion of the JPEG 2000 test image Bike (downsampled by four in
each direction), and a portion of the Spincalendar HDTV test sequence. Figure 7.16 and
Figure 7.17 each show the original image, the image reconstructed from the Bayer CFA
using bilinear interpolation, the image reconstructed from the Bayer CFA using the adaptive
least-squares algorithm, and the image reconstructed from the stripe pattern using the least-
squares algorithm. The bilinear reconstruction clearly shows the artifacts due to luma-
chrominance crosstalk for the Bayer pattern in both images. The test-pattern portion of
the Bike image has very high horizontal frequencies, right up to the Nyquist frequency.
An excellent result is obtained with the adaptive least-squares frequency demultiplexing
algorithm, but a small amount of residual cross color remains. For the stripe CFA, there
is much less crosstalk in the horizontal-frequency components, due to the location of the
chrominance components, and an even better result is obtained for these portions of the
Bike image. However, other portions with diagonal structures do not fare as well. For the
Spincalendar image, there are strong diagonal frequencies, and the Bayer CFA with the
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adaptive least-squares frequency demultiplexing algorithm gives a much better result than
the stripe pattern. Overall, the Bayer pattern is better when evaluated over all 24 Kodak
images. Other demosaicking results can be found at the companion webpage [17] for this
chapter.

7.6 Concluding Remarks

This chapter has presented a mathematical framework to analyze periodic CFA patterns
(which includes most that have been proposed) using a frequency-domain approach. This
framework serves to explain the typical artifacts observed in demosaicked images with
these patterns and to inspire new demosaicking methods with good performance and mod-
erate complexity. The analysis has been illustrated with the common Bayer pattern and
with three other CFA patterns that bring out several aspects of the theory. Many more
structures have been proposed and can be analyzed with these methods. Detailed numer-
ical and visual results for these methods have not been presented here as that was not the
goal; many such results can be found elsewhere. The adaptive method for the Bayer CFA
described in this chapter is currently highly competitive with the state of the art with respect
to demosaicked image quality and computational complexity. However, the work on this
topic is not concluded. Among other directions, the extension of the adaptive algorithm to
the case of four sensor classes should be pursued, as well as integrating the method with
up-sampling and super-resolution techniques.
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Appendix: Lattices and Two-Dimensional Signals on Lattices

Lattices have been widely used to describe sampled multidimensional signals with non-
rectangular sampling structures. For the purposes of this chapter, we are concerned with
discrete-space two-dimensional (2D) still images. This appendix summarizes the key con-
cepts and notations used in this chapter. Detailed expositions and illustrations can be found
in References [1] and [2]. The discussion is limited to the 2D case, since that is all we
require here.
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. A lattice A in two-dimensions is the set of all linear combinations, with integer co-

efficients, of two linearly independent vectors v; and v in R?,
A={nvi+mvy | ny,ny € Z}. (7.78)

The basis vectors v; and v, are expressed as 2 x 1 column matrices, and thus so are
the elements of A.

. The 2 x 2 matrix V = [v; | v,] is referred to as a sampling matrix for A. Then, we

write
A =LAT(V)={Vn|n¢c Z%}. (7.79)

The sampling matrix for a given lattice is not unique; LAT(V;) = LAT(V,) if and
only if E = V'V, is unimodular, i.e., an integer matrix such that |detE| = 1.

. A unit cell of alattice A is a set &2 C R? such that copies of & centered on each

lattice point tile all of R? without overlap. The unit cell is not unique. The area of
any unit cell is d(A) = | det V| for any sampling matrix V. The Voronoi cell is a unit
cell in which no point is closer to any non-zero element of A than to the origin 0.

. The set A* = {r|r-x € Zfor allx € A} is a lattice known as the reciprocal lattice. If

A = LAT(V), then A* = LAT(V~T) where V-7 denotes (V7)~!, T denotes matrix
transpose and r - x denotes the matrix product r’ x. d(A*) = 1/d(A).

. The set I is a sublattice of A if both A and I are lattices, and every point of I" belongs

to A. We write I' C A. I = LAT(Vr) is a sublattice of A = LAT(V,) if and only if
M = (V,)~'Vr is an integer matrix.

. IfT" C A, then A* C I™.

. If ' C A, so that Vr = VoM for an integer matrix M, then d(I") = |detM|d(A)

where K = |detM]| is an integer. K = d(I")/d(A) is called the index of I" in A,
denoted (A : T).

. If " C A, the set

c+I'={c+x|xel} (7.80)

for any ¢ € A is called a coset of I" in A. Two cosets are either identical or disjoint:
c+I'=d+Tife—d eI} otherwise (c+I")(d+1I') =0. Thereare K = (A : I)
distinct cosets of I' in A. If by,...,bg are arbitrary elements of these K cosets,
denoted coset representatives, we have

K
A={Jmde+T). (7.81)
k=1

. Let f[x], x € A be a scalar signal defined on a lattice A. We define the Fourier

transform of f[x] to be

F(u)=Y fx]exp(—j27u-x) (7.82)

xeA
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10.

11.

where u = [u v]7 is a two-dimensional frequency vector, expressed in cycles per unit
of length. The Fourier transform is a periodic function of the continuous frequency
vector, with periodicity given by the reciprocal lattice: F(u) = F(u+r) for all r €
A*. The Fourier transform of f[x]exp(j2mug - X) is F(u—up) for an arbitrary fixed

frequency vector ug; this is the modulation property.

A signal f[x], x € A is periodic with periodicity lattice I" if f[x+ ¢] = f[x] for all
ce D, where I' C A. There are K = (A : T) distinct values of this signal, which form
one period. These are f[bi],..., f[bk], where by,...,bg is an arbitrary set of coset
representatives of I" in A. The periodic signal is constant on cosets of I" in A.

A periodic signal f[x], x € A, with periodicity lattice I" C A has the discrete Fourier
series representation

K
Z Jexp(j2mx-d;), X€A (7.83)
where
| K
Flk] = e ;f[bj]exp(—ﬂn'bj-dk), k=1,...,K. (7.84)
In these expressions, K = (A : I'), by, ..., bk are coset representatives for I in A and
di,...,dg are coset representatives for A* in I'*.
1
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1

8.1 Introduction

Today, digital cameras are ubiquitous. One can be purchased for a price equivalent to a
night’s stay in a hotel in occidental countries, or it may be included for “free” in a mobile
phone or a laptop computer. The existence of such a common and ultimately cheap device
is due to fundamental developments in the way an image is acquired by the sensor and
processed by the microcomputer embedded in the camera. These developments would not
have been possible without recent breakthroughs in digital color image processing [1].

In this chapter, we focus on the sampling of images by a single camera sensor and on the
subsequent digital image processing called demosaicking necessary to mimic the fact that a
color image has three different color responses at each spatial position [2]. We highlight the
properties of the human visual system (HVS) that have been exploited in the development
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of digital cameras in general and demosaicking in particular. The workings of the human
visual system are still a source of inspiration today because they have capabilities that are
not yet taken into account in digital cameras. In particular, we discuss how the random
nature of the arrangement of chromatic samples in the retina can improve color sampling
by digital cameras.

This chapter is organized as follows. In the first section, we recall the properties of the
human visual system that have been exploited in the development of digital color image
processing. How the trichromacy of color vision has been discovered and is used in digital
image processing is discussed. We describe how digital images are either acquired through
three sensors or through a single sensor. In the second section, a model of spatio-chromatic
sampling applicable to the human visual system and digital cameras is described. This
model enables the understanding of the signal content in single-chip digital cameras. In the
third section, methods of reconstructing color information from a mosaic through linear
approaches are discussed. In the fourth section, we extend these approaches with adaptive
processes.

8.1.1 Trichromacy in Human Vision

We can state that the history of color science started in the 16th century with the dis-
covery made by Newton [3] who showed that sunlight was composed of several colors, the
colors of the rainbow. By extension, the light is a combination of all the monochromatic
lights of the visible spectrum. In practice, this discovery permits us to reproduce color
sensations by modulating the intensity of different monochromatic primaries. However, it
is not necessary to modulate the entire wavelength domain to reproduce a color sensation
because, as discovered by Young [4] and then confirmed by Helmholtz [5], the human vi-
sual system is trichromatic. The property of trichromacy is that it is sufficient to modulate
only three primaries to mimic the sensation of any light with arbitrary continuous spec-
trum, provided that none of the primaries can be matched with a combination of the other
two. In general, we use a red (R), a green (G), and a blue (B) primary. These primaries
are indicative of their maximum intensity in the visible spectrum: blue is the color of short
wavelength radiation, green of middle wavelengths, and red of long wavelengths.

Trichromacy was established long before it was known that the human retina was com-
posed of three kinds of cones sensitive to three different wavelength ranges [6], [7]. These
cones are called L, M, and S for their respective sensitivity to long, middle and short wave-
lengths. Two lights that have the same L, M, and S cone responses give the same color
sensation (such lights are called metamers). Thus, the dimension of the space that repre-
sents color in the human visual system is three. This property is used in digital capture
systems and image displays.

Trichromacy is also the basis for colorimetry [8], the science of color measurement. The
principle of colorimetry is based on color matching experiments. The experiments consist
of comparing a color with an additive mixture of monochromatic primaries. The intensity
of the primaries needed to obtain a match with a color sensation serves as an indicator of
the color content in terms of these primaries. This method was used to standardize color
spaces such as CIE-RGB and CIE-XYZ by the Commission Internationale de 1'Eclairage
(CIE) in 1931.
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(a)
FIGURE 8.1

(@

Example of a color image decomposition into its red, green, and blue components: (a) color image, (b) red

channel, (c) green channel, and (d) blue channel. Color version of the original image is available in Figure 8.2.

An important property of color spaces is that the mixture of light is a linear process. The
color-space position of a light mixture can be derived by adding the coordinate vectors of
the lights that make up that mixture. Also, in a color space defined by the @, ¢¢, and
@p spectral sensitivities of a camera sensor, any light is defined by a linear combination of
the Red (R), Green (G), and Blue (B) primaries. Thus, the RGB values of a digital image
define the corresponding color as a linear mixture of the R, G, and B primaries.

8.1.2 Digital Color Image Encoding

Trichromacy is exploited in the formation, rendering, and reproduction of color images.
As shown in Figure 8.1, a color image is a matrix with three components, one for R, one
for G, and one for B, respectively. The rendering of these three components on a video
screen, which has three RGB phosphors or three color filters, allows reproduction of the
color sensation equivalent to that produced by the natural scene itself. Thus, the color
processing chain from acquisition of a color image, coding of digital values, and rendering
to the display can be designed using a three-dimensional space for all color representations.

An RGB representation is not the only color representation used in digital video and
imaging. Chromatic information in images is often reduced to achieve smaller sized files.
The human visual system is less sensitive to high frequencies in chrominance than in lu-
minance. In other words, the spatial resolution of chrominance can be quite a bit lower
than the resolution of luminance without observing any visual degradation in the image. A
luminance-chrominance representation is analogous to the receptive field encoding at the
ganglion cells in the human retina. Luminance represents spatial information in terms of
light-dark changes, such as edges, while chrominance represents the hue and saturation of
a color (see Section 8.2.1).

There are several ways to construct a luminance-chrominance representation of a color
image. For example, we can transform the R, G and B values into a triplet called Y, Cb,
and Cr, where Y represents the luma and is a positive combination of R, G, and B val-
ues. In general, the RGB values are already “gamma-corrected,” meaning that a nonlinear
encoding has been applied to the color channels, and thus Y is not representative of the
physically measurable luminance anymore. Cr and Cb are two opponent chromatic chan-
nels. The amount of image data can be reduced by retaining all Y values, but subsampling
Cb and Cr by a factor of two or four without significant visual loss.
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8.1.3 Image Acquisition through Single Chip Digital Camera

Similarly to the human retina, where we have only one cone type per spatial location,
most digital cameras today use a single sensor to capture color images. The sensor is
covered by an array matrix of color filters to allow the acquisition of different chromatic
contents of the scene. In general, the filters transmit either blue, green, or red light. Conse-
quently, a single chromatic value is sampled at each spatial location. To reconstruct three
chromatic values from the mosaic of single values, we need to use a signal processing
method that is called demosaicking.

There are many color filter arrays (CFAs) for digital cameras. The problem to take into
account when designing a CFA is the ability to fully reconstruct a color image with three
chromatic components from the mosaic of single color values. The sampling of a scene
with a single color filter per spatial location results in a compromise in the representation
of spatial versus chromatic information of the image. Spatial and chromatic information
is present as a mixture in a CFA image. Thus, can we design an arrangement of color
filters that maximizes the ability to fully reconstruct the spatial and chromatic content of
the scene? This question is still unresolved, but we discuss the properties of several CFA’s
in terms of their spatial and chromatic representation of light in Section 8.2.2.

The first proposed color filter array was composed of vertical stripes of red, green, and
blue columns. It has also been proposed that the stripes could be oriented. These arrange-
ments, even if they are easy to build, have not been used extensively because the color
sampling frequencies are not the same in horizontal and vertical direction.

Another CFA was proposed by Bayer [9] in 1976. It fulfills two constraints. It has a
color sampling frequency that is the same in vertical and horizontal direction for all three
colors. It also has two times more green pixels than red and blue, favoring the sampling
of luminance as stated by the inventor. The diagonal sampling frequency is thus higher for
green than for red and blue. In the beginning, this CFA was not as successful as today.
Recall that in 1976, most electronic image capture was for analog color television, which
used an interlaced image encoding. Interlacing video means that the first frame displays
only even image lines, and then the second frame displays the odd lines. This method
reduces the amount of data to be processed at one time, and it became a standard for color
television. The problem with the Bayer CFA is that the red or blue values are sampled only
on either the even or the odd lines, respectively. This has the consequence that the red and
blue colors flickered when video frames were displayed in interlaced mode. To compensate
for that Dillon [10] proposed another CFA where red and blue are present at every line.

However, the Bayer CFA is certainly nowadays the most popular CFA in digital cameras
because it has a good representation of chromatic and spatial information. We will also
discuss a CFA proposed by Lukac [11] that is an improvement of the Bayer CFA for the
horizontal representation of luminance values.

There exist several other CFAs, which use either four colors or a hexagonal arrangement
of the color filters. We do not discuss these CFAs in this chapter. Also, a different method
for acquiring a color image with a single sensor has recently been proposed by Foveon [12].
This method uses the fact that the penetration of light in silicon depends on the wavelength
of the light. It allows the separation of red, green, and blue at each pixel by reading the
responses at different well depths, and is not further discussed.
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Finally, similarly to the human visual system that has a random arrangement [13] of
cones at the surface of the retina, we study the case of a random arrangement of chro-
matic samples for digital cameras. The problem with a random arrangement is that the
neighborhood of a sample changes from location to location and uniform space invariant
reconstruction methods cannot be used. However, using a pattern of random color filters
periodically repeated on the sensor surface, we benefit from the nonaliasing properties of
random sampling and are able to reconstruct the color with a linear method.

8.2 Color Filter Array Signal Representation

In this section, we show that the representation of a color image in luminance and op-
ponent chromatic channels is better than in red, green, and blue when considering demo-
saicking. This representation allows distinguishing the spatial and chromatic contents of
a scene. Moreover, it is still effective even in the case of a mosaic image with a single
chromatic value per spatial position.

8.2.1 Luminance-Chrominance Representation of Color Images

Considering the trichromatic properties of the human visual system discussed in the pre-
vious section, it has become natural to think that a color image should be represented by
three components. These components are representative of the energy measured by three
sensors with different sensitivities, usually red, green, and blue.

An RGB representation of a color image does not highlight the two main properties of our
visual perception of scenes: the ability to account for both the intensity of the light source
on an object surface and the colors of the object. However, since the tristimulus values form
a vector space, a linear transformation from this space to another with different properties
is possible without drastically changing the nature of the data. A linear transformation also
allows for an inverse transformation.

The transformation should decorrelate as much as possible the spatial information from
chromatic content to allow for processing the color data without aliasing effects. The spatial
component should contain no chromatic content, while the chromatic component should
be free of any intensity information. Intuitively, the transformation should be a positive
combination of red, green, and blue values for the achromatic channel, whereas it should
be a difference of these values for the chromatic channel, with an average value that is zero.
There exists an infinite number of possible transformations from RGB to achromatic and
chromatic color channels following these rules. Actually, the achromatic information of a
tristimulus value is not uniquely defined. The achromatic channel has a spectral sensitivity
response that is defined by the respective contributions of the spectral sensitivity responses
of each R, G and B channel.

Let I = {Cg,Cs,Cp} be a color image with three color planes Red, Green, and Blue. The
projection of the color channels on an achromatic axis is given by the following sum, with
the assumption that p; (for i € {R,G,B} and }; p; = 1) is the proportion of the chromatic
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(@) (b) ()
FIGURE 8.2 (See color insert.)

Example of color image decomposition into its luminance and chrominance components. (a) Color image
with three chromatic values R, G and B at each spatial location. (b) The luminance component, a scalar
value per spatial position corresponding to the mean of RGB values. (c) The chrominance values having three
components per spatial position corresponding to the difference of each RGB component with the luminance.

component 7 in the achromatic signal ¢:
¢ =Y pCi 8.1
i

The content of the signal C; can be expressed by the irradiance of the scene S(x,y,A)
through the spectral sensitivity responses of the filters ¢; (i = R, G, B) of the acquisition
process:

Cilx,y) = A S(x,y, 2)9i(A)dA 8.2)

From Equations 8.1 and 8.2, note that luminance has a spectral sensitivity response given
by the spectral sensitivity functions ¢; and the weights p; of the chromatic channels. The
spectral sensitivity function for luminance is given by Y ; p;¢;,. This means that the lu-
minance is directly dependent on both the spectral sensitivity functions of the chromatic
channels R, G, and B and the proportion of each of these channels that give the luminance
signal.

For the human visual system, the luminance signal is not well defined. The CIE rec-
ognizes the V(A ) function [8] as being the luminosity function of the standard observer,
which should represent the human ability to assess the sensation of luminosity. It is there-
fore possible to simulate this function during the luminance computation by choosing the
appropriate coefficients p; that match as best as possible the spectral sensitivity response of
the luminance function to the shape of V(4).

Concerning chrominance, the debate is even more open. There is no real consensus on
what the human visual system computes as chromatic channels. Some indications are given
by the work of Hering [14] and Jameson and Hurvich [15], which estimated opponent color
responses psychophysically.

Recall that our chrominance is defined as having a zero mean to avoid any intensity
information. Also, since the dimension of the chromatic color space is three, consider
that the chrominance space is also of dimension three to take into account the variability
along each of the chromatic axes. However, these variables are linearly dependent and the
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FIGURE 8.3

Plots of B as a function of G (left) and yp as a function of ¢ (right) for the example of Figure 8.2. We can see

that B and G have a principal component in y = x, while yp and ¢ are more decorrelated.

intrinsic dimension is thus only two. If we consider the difference between each chromatic
channel and the luminance function defined in Equation 8.1, we have:

Yi=Ci—¢=C—Y piCi=(1-p)Ci—Y piC (8.3)
B =

Since ) ; p; = 1, it follows that }; p;y; = 0, meaning that the weighted average of the
chrominance components is zero at each pixel. Our definitions of luminance and chromi-
nance respect the condition we have 