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Abstract

We describe an adaptation and application
of a search-based structured prediction al-
gorithm “Searn” to unsupervised learning
problems. We show that it is possible to
reduce unsupervised learning to supervised
learning and demonstrate a high-quality un-
supervised shift-reduce parsing model. We
additionally show a close connection between
unsupervised Searn and expectation maxi-
mization. Finally, we demonstrate the effi-
cacy of a semi-supervised extension. The key
idea that enables this is an application of the
predict-self idea for unsupervised learning.

1. Introduction

A prevalent and useful version of unsupervised learn-
ing arises when both the observed data and the la-
tent variables are structured. Examples range from
hidden alignment variables in speech recognition (Ra-
biner, 1989) and machine translation (Brown et al.,
1993; Vogel et al., 1996), to latent trees in unsuper-
vised parsing (Paskin, 2001; Klein & Manning, 2004;
Smith & Eisner, 2005; Titov & Henderson, 2007), and
to pose estimation in computer vision (Ramanan et al.,
2005). These techniques are all based on probabilistic
models. Their applicability hinges on the tractability
of (approximately) computing latent variable expecta-
tions, thus enabling the use of EM (Dempster et al.,
1977). In this paper we show that a recently-developed
search-based algorithm, Searn (Daumé III et al., 2009
to appear) (see Section 2.2), can be utilized for unsu-
pervised structured prediction (Section 3). We show:
(1) that under an appropriate construction, Searn can
imitate the expectation maximization (Section 4); (2)
that unsupervised Searn can be used to obtain com-
petitive performance on an unsupervised dependency
parsing task (Section 6); and (3) that unsupervised
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Searn naturally extends to a semi-supervised setting
(Section 7). The key insight that enables this work is
that we can consider the prediction of the (observed)
input to be, itself, a structured prediction problem.

2. Structured Prediction

The supervised structured prediction problem is the
task of mapping inputs x to complex structured out-
puts y (e.g., sequences, trees, etc.). Formally, let X
be an arbitrary input space and Y be structure output
space. Y is typically assumed to decompose over some
smaller substructures (e.g., labels in a sequence). Y
comes equipped with a loss function, often assumed
to take the form of a Hamming loss over the sub-
structures. Features are defined over pairs (x, y) in
such a way that they obey the substructures (e.g., one
might have features over adjacent label pairs in a se-
quence). Under strong assumptions on the structures,
the loss function and the features (essentially “local-
ity” assumptions), a number of learning algorithms
can be employed: for example, conditional random
fields (Lafferty et al., 2001) or max-margin Markov
networks (Taskar et al., 2005).

A key difficulty in structured prediction occurs when
the output space Y, the features, or the loss, does not
decompose nicely. All of these issues can lead to in-
tractable computations at either training or prediction
time (often both). An attractive approach for deal-
ing with this intractability is to employ a search-based
algorithm. The key idea in search-based structured
prediction is to first decompose the output y into a se-
quence of (dependent) smaller predictions y1, . . . , yT .
These may each be predicted in turn, with later pre-
dictions dependent of previous decisions.

2.1. Search-based Structured Prediction

A recently proposed algorithm for solving the struc-
tured prediction problem is Searn (Daumé III et al.,
2009 to appear). Searn operates by considering each
substructure prediction y1, . . . , yT as a classification
problem. A classifier h is trained so that at time t,
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given a feature vector, it predict the best value for yt.
The feature vector can be based on any part of the
input x and any previous decision y1, . . . , yt−1. This
introduces a chicken-and-egg problem. h should ide-
ally be trained so that it makes the best decision for yt
given that h makes all past decisions y1, . . . , yt−1 and
all future decisions yt+1, . . . , yT . Of course, at train-
ing time we do not have access to h (we are trying
to construct it). The solution is to use an iterative
scheme.

2.2. Searn

The presentation we give here differs slightly from the
original presentation of the Searn algorithm. Our
motivation for straying from the original formulation is
because our presentation makes more clear the connec-
tion between our unsupervised variant of Searn and
more standard unsupervised learning methods (such
as standard algorithms on hidden Markov models).

Let DSP denote a distribution over pairs (x, y) drawn
from X ×Y, and let `(y, ŷ) be the loss associated with
predicting ŷ when the true answer is y. We assume
that y ∈ Y can be decomposed into atomic predictions
y1, . . . , yT , where each yt is drawn from a discrete set
Y . A policy, π, is a (possibly stochastic) function that
maps tuples (x, y1, . . . , yt−1) to atomic predictions yt.

The key ingredient in Searn is to use the loss func-
tion ` and a “current” policy π to turn DSP into a dis-
tribution over cost-sensitive (multiclass) classification
problems (Beygelzimer et al., 2005). A cost-sensitive
classification example is given by an input x and a cost
vector c = 〈c1, . . . , cK〉, where ck is the cost of predict-
ing class k on input x. Define by Searn(DSP, `, π) a
distribution over cost-sensitive classification problems
derived as follows. To sample from this induced dis-
tribution, we first sample an example (x, y) ∼ DSP.
We then sample t uniformly from [1, T ] and run π for
t − 1 steps on (x, y). This yields a partial prediction
(ŷ1, . . . , ŷt−1). The input for the cost sensitive classifi-
cation problem is then the tuple (x, ŷ1, . . . , ŷt−1). The
costs are derived as follows. For each possible choice k
of ŷt, we defined ck as the expected loss if π were run,
beginning at (ŷ1, . . . , ŷt−1, k) on input x. Formally:

ck = Eŷt+1,...,ŷT∼π`(y, (ŷ1, . . . , ŷt−1, k, ŷt+1, . . . , ŷT ))
(1)

Searn assumes access to an “initial policy” π∗ (some-
times called the “optimal policy”). Given an input x,
a true output y and a prefix of predictions ŷ1, . . . , ŷt−1,
π∗ produces a best next-action, ŷt. It should be con-
structed so that the choice ŷt is optimal (or close to
optimal) with respect to the problem-specific loss func-
tion. For example, if the loss function is Hamming loss,

Algorithm Searn-Learn(A,DSP, `, π∗, β)
1: Initialize π = π∗

2: while not converged do
3: Sample: D ∼Searn(DSP, `, π)
4: Learn: h← A(D)
5: Update: π ← (1− β)π + βh
6: end while
7: Return π without reference to π∗

Figure 1. The complete Searn algorithm. It’s parameters
are: a cost-sensitive classification algorithm A, a distribu-
tion over structured problems DSP, a loss function `, an
initial policy π∗ and an interpolation parameter β.

the π∗ will always produce ŷt = yt. For more complex
loss functions, computing π∗ may be more involved.

Given these ingredients, Searn operates according the
algorithm given in Figure 1. Operationally, the sam-
pling step is typically implemented by generating ev-
ery example from a fixed structured prediction train-
ing set. The costs (expected losses) are computed by
sampling with tied randomness (Ng & Jordan, 2000).

If β = 1/T 3, one can show (Daumé III et al., 2009 to
appear) that after at most 2T 3 lnT iterations, Searn
is guaranteed to find a solution π with structured pre-
diction loss bounded as:

L(π) ≤ L(π∗) + 2`avgT lnT + c(1 + lnT )/T (2)

where L(π∗) is the loss of the initial policy (typically
zero), T is the length of the longest example, c is the
worse-case per-step loss and `avg is the average multi-
class classification loss. This shows that the structured
prediction algorithm learned by Searn is guaranteed
to be not-much-worse than that produced by the initial
policy, provided that the created classification prob-
lems are easy (i.e., that `avg is small). Note that one
can use any classification algorithm one likes.

3. Unsupervised Searn

In unsupervised structured prediction, we no longer re-
ceive an pair (x, y) but instead observes only an input
x. Our job is to construct a classifier that produces y,
even though we have never observed it.

3.1. Reduction for Unsupervised to Supervised

The key idea—one that underlies much work in unsu-
pervised learning—is that a good y is one that enables
us to easily recover x. This is precisely the intuition
we build in to our model. The observation that makes
this practical is that there is nothing in the theory
or application of Searn that says that π∗ cannot be
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stochastic. Moreover, there is not requirement that the
loss function depend on all components of the predic-
tion. Our model will essentially first predict y and then
predict x based on y. Importantly, the loss function is
agnostic to y (since we do not have true outputs).

The general construction is as follows. Let Dunsup be a
distribution over inputs x ∈ X and let Y be the space
of desired latent structures (e.g., trees). We define a
distribution Dsup over X × (Y ×X ) by defining a sam-
pling procedure. To sample from Dsup, we first sample
x ∼ Dunsup. We then sample uniformly from the set
of all Y that are valid structures for x. Finally, we re-
turn the pair (x, (y, x)). We define a loss function L by
L((y, x), (ŷ, x̂)) = Linput(x, x̂) where Linput is any loss
function on the input space (e.g., Hamming loss). We
apply Searn to the supervised structured prediction
problem Dsup, and implicitly learn latent structures.

3.2. Sequence Labeling Example

To gain insight into the operation of Searn in the
unsupervised setting, it is useful to consider a sequence
labeling example. That is, our input x is a sequence
of length T and we desire a label sequence y of length
T drawn from a label space of size K. We convert
this into a supervised learning problem by considering
the “true” structured output to be a label sequence
of length 2T , with the first T components drawn from
the label space of size K and the second T components
drawn from the input vocabulary. The loss function
can then be anything that depends only on the last
T components. For simplicity, we can consider it to
be Hamming loss. The construction of the optimal
policy in this case is straightforward. For the first T
components, π∗ may behave arbitrarily (e.g., it may
produce a uniform distribution over the K labels). For
the second T components, π∗ always predicts the true
label (which is known, because it is part of the input).

An important aspect of the model is the construction
of the feature vectors. It is most useful to consider this
construction as having two parts. The first part has
to do with predicting the hidden structure (the first T
components). The second part has to do with predict-
ing the observed structure (the second T components).
For the first part, we are free to use whatever features
we desire, so long as they can be computed based on
the input x and a partial output. For instance, in the
HMM case, we could use the two most recent label
predictions and windowed features from x.

The construction of the features for the second part is,
however, also crucial. For instance, if the feature vec-
tor corresponding to “predict the tth component of x”
contains the t component of x, then this learning prob-

lem is trivial—but also renders the latent structure
useless. The goal of the designer of the feature space
is to construct features for predicting xt that crucially
depend on getting the latent structure y correct. That
is, the ideal feature set is one for which you can predict
xt accurately if an only if we have found the correct
latent structure (more on this in Section 5). For in-
stance, in the HMM case, we may predict xt based
only on the corresponding label yt, or maybe on the
basis of yt−1, yt, yt+1. (Note that we are not limited
to the Markov assumption, as in the case of HMMs.)

In the first iteration of Searn, all costs for the predic-
tion of the latent structure are computed with respect
to the initial policy. Recalling that the initial policy
behaves randomly when predicting the latent labels
and correctly when predicting the words, we can see
that these costs are all zero. Thus, for the latent struc-
ture actions, Searn will not induce any classification
examples (because the cost of all actions is equal).
However, it will create example for predicting the x
component. For predicting the xs, the cost will be zero
for the correct word and one for any incorrect word.
These examples will have associated features: we will
predict word xt based exclusively on yt. Remember:
yt was generated randomly by the initial policy.

In the second iteration, the behavior is different.
Searn returns to creating examples for the latent
structure components. However, in this iteration,
since the current policy is not longer optimal, the fu-
ture cost estimates may be non-zero. Consider gen-
erating an example corresponding to a (latent) state
yt. For some small percentage (as dictated by β) of the
“generate x” decisions, the previously learned classifier
will fire. If this learned classifier does well, then the
associated cost will be low. However, if the learned
classifier does poorly, the the associated cost will be
high. Intuitively, the learned classifier will do well if
and only if the action that labels yt is “good” (i.e.,
consistent with what was learned previously). This, in
the second pass through the data, Searn does create
classification examples specific to the latent decisions.

As Searn iterates, more and more of the latent pre-
diction decisions are made according to the learned
classifiers and not with respect to the random policy.

4. Comparison to EM

In this section, we show an equivalence between ex-
pectation maximization in directed probabilistic struc-
tures and unsupervised Searn. We use mixture of
multinomials as a motivating example (primarily for
simplicity), but the results easily extend to more com-



Unsupervised Search-based Structured Prediction

plicated models (e.g., HMMs: see Section 4.3).

4.1. EM for Mixture of Multinomials

In the mixture of multinomials problem, we are given
N documents d1, . . . ,dN , where dn is a vector of word
counts over a vocabulary of size V ; that is, dn,v is
the number of times word v appeared in document n.
The mixture of multinomials is a probabilistic cluster-
ing model, where we assume an underlying set of K
clusters (multinomials) that generated the documents.
Denote by θk the multinomial parameter associated
with cluster k, ρk the prior probability of choosing
cluster k, and let zn be an indicator vector associat-
ing document n with the unique cluster k such that
zn,k = 1. The probabilistic model has the form:

p(d | θ,ρ) =
∏
n

(
∑
v dn,v)!∏
v dn,v!

∑
zn

∏
k

[
ρk

∏
v

θ
dn,v

k,v

]zn,k

(3)
Expectation maximization in this model involves first
computing expectations over the z vectors and then
updating the model parameters θ:

E-step: zn,k ∝ ρk

Y
v

θ
dn,v

k,v (4)

M-step: θk,v ∝
X

n

zn,kdn,v ; ρk ∝
X

n

zn,k (5)

In both cases, the constant of proportionality is chosen
so that the variables sum to one over the last compo-
nent. These updates are repeated until convergence of
the incomplete data likelihood, Eq (3).

4.2. An Equivalent Model in Searn

Now, we show how to construct an instance of unsu-
pervised Searn that effectively mimics the behavior
of EM on the mixture of multinomials problem. The
ingredients are as follows:

• The input space X is the space of documents, repre-
sented as word count vectors.

• The (latent) output space Y is a single discrete vari-
able in the range [1,K] that specifies the cluster.

• The feature set for predicting y (document counts).

• The feature set for predicting x is the label y and the
total number of words in the document. The predic-
tions for a document are estimated word probabilities,
not the words themselves.

• The loss function ignores the prediction y and returns
the log loss of the true document x under the word
probabilities predicted.

• The cost-sensitive learning algorithm is different de-
pending on whether the latent structure y is being
predicted or if the document x is being predicted:

– Structure: The base classifier is a multinomial
näıve Bayes classifier, parameterized by (say) hm

– Document: The base classifier is a collection
of independent maximum likelihood multinomial
estimators for each cluster.

Consider the behavior of this setup. In particular, con-
sider the distribution Searn(DSP, `, π). There are two
“types” of examples drawn from this distribution: (1)
latent structure examples and (2) document examples.
The claim is that both classifiers learned are identical
to the mixture of multinomials model from Section 4.1.

Consider the generation of a latent structure exam-
ple. First, a document n is sampled uniformly from
the training set. Then, for each possible label k of this
document, a cost Ed̂∼πl((y,dn), (k, d̂)) is computed.
By definition, the d̂ that is computed is exactly the
prediction according to the current multinomial esti-
mator, hm. Interpreting the multinomial estimator in
terms of the EM parameters, the costs are precisely the
zn,ks from EM (see Eq (4)). These latent structure ex-
amples are fed in to the multinomial näıve Bayes clas-
sifier, which re-estimates a model exactly as per the
M-step in EM (Eq (5)).

Next, consider the generation of the document exam-
ples. These examples are generated by π first choos-
ing a cluster according to the structure classifier. This
cluster id is then used as the (only) feature to the “gen-
erate document” multinomial. As we saw before, the
probability that π will select label k for document n
is precisely zn,k from Eq (4). Thus, the multinomial
estimator will effectively receive weighted examples,
weighted by these zn,ks, thus making the maximum
likelihood estimate exactly the same as the M-step
from EM (Eq (5)).

4.3. Synthetic experiments

To demonstrate the advantages of the generality of
Searn, we report here the result of some experiments
on synthetic data. We generate synthetic data ac-
cording to two different HMMs. The first HMM is
a first-order model. The initial state probabilities, the
transition probabilities, and the observation probabil-
ities are all drawn uniformly. The second HMM is a
second-order model, also will all probabilities drawn
uniformly. The lengths of observations are given by a
Poisson with a fixed mean.

In our experiments, we consider the following learn-
ing algorithms: EM, Searn with HMM features and
a näıve Bayes classifier, and Searn with a logistic
regression classifier (and an enhanced feature space:
predicting yt depends on xt−1:t+1. The first Searn
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Table 1. Error rates on first- and second-order Markov data with 2, 5 or 10 latent states. Models are the true data
generating distribution (approximated by a first-order Markov model in the case of HMM2), a model learned by EM, one
learned by Searn with a näıve Bayes base classifier, and one learned by Searn with a logistic regression base classifier.
Standard deviations are given in small text. The best results by row are bolded; the results within the standard deviation
of the best results are italicized.

Model States Truth EM Searn -NB Searn -LR
1st order HMM K = 2 0.227 ±0.107 0.275 ±0.128 0.287 ±0.138 0.276 ±0.095

1st order HMM K = 5 0.687 ±0.043 0.678 ±0.026 0.688 ±0.025 0.672 ±0.022

1st order HMM K = 10 0.806 ±0.035 0.762 ±0.021 0.771 ±0.019 0.755 ±0.019

2nd order HMM K = 2 0.294 ±0.072 0.396 ±0.057 0.408 ±0.056 0.271 ±0.057

2nd order HMM K = 5 0.651 ±0.068 0.695 ±0.027 0.710 ±0.016 0.633 ±0.018

2nd order HMM K = 10 0.815 ±0.032 0.764 ±0.021 0.771 ±0.015 0.705 ±0.019

should mimic EM, but by using sampling rather than
exact expectation computations. The models are all
first-order, regardless of the underlying process.

We run the following experiment. For a given number
of states (which we will vary), we generate 10 random
data sets according to each model. Each data set con-
sists of 5 examples with mean example length of 40 ob-
servations. The vocabulary size of the observed data is
always 10. We compute error rates by matching each
predicted label to the best-matching true label and the
compute Hamming loss. Forward-backward is initial-
ized randomly. We run experiments with the number
of latent states equal to 2, 5 and 10.1

The results of the experiments are shown in Ta-
ble 1. The observations show two things. When the
true model matches the model we attempt to learn
(HMM1), there is essentially no statistically signifi-
cant difference between any of the algorithms. Where
once sees a difference is when the true model does not
match the learned model (HMM2). In this case, we see
that Searn-LR obtains a significant advantage over
both EM and Searn-NB, due to its ability to employ
a richer set of features. These results hold over all
values of K. This is encouraging, since in the real
world our model is rarely (if ever) right. The (not sta-
tistically significant) difference in error rates between
EM and Searn-NB are due to a sampling versus ex-
act computation of expectations. Many of the models
outperform “truth” because likelihood and accuracy
do not necessarily correlate (Liang & Klein, 2008).

5. Analysis

There are two keys to success in unsupervised-Searn.
The first key is that the features on the Y-component
of the output space be descriptive enough that it be

1We ran experiments varying the number of samples
Searn uses in {1, 2, 5}; there was no statistically significant
difference. The results we report are based on 2 samples.

learnable. One way of thinking of this constraint is
that if we had labeled data, then we would be able to
learn well. The second key is that the features on the
X -component of the output space be intrinsically tied
to the hidden component. Ideally, these features will
be such that X can be predicted with high accuracy if
and only if Y is predicted accurately.

The general–though very trivial–result is that if we
can guarantee that the loss on Y is bounded by some
function f of the loss on X , then the loss on Y is
guaranteed after learning to be bounded by f(L(π∗)+
2`avgTmaxlnTmax + c(1 + lnTmax)/Tmax), where all the
constants now depend on the induced structured pre-
diction problem; see Eq 2.

One can see the unsupervised Searn analysis as jus-
tifying a small variant on “Viterbi training”–the pro-
cess of performing EM where the E-step is approxi-
mated with a delta function centered at the maximum.
One significant issue with Viterbi training is that it is
not guaranteed to converge. However, Viterbi training
is recovered as a special case of unsupervised Searn
where the interpolation parameter is fixed at 1. While
the Searn theorem no longer applies in this degen-
erate case, any algorithm that uses Viterbi training
could easily be retrofitted to simply make some de-
cisions randomly. In doing so, one would obtain an
algorithm that does have theoretical guarantees.

6. Unsupervised Dependency Parsing

The dependency formalism is a practical and linguis-
tically interesting model of syntactic structure. One
can think of a dependency structure for a sentence of
length T as a directed tree over a graph over T + 1
nodes: one node for each word plus a unique root
node. Edges point from heads to dependents. An ex-
ample dependency structure for a T = 7 word sentence
is shown in Figure 2 . To date, unsupervised depen-
dency parsing has only been viewed in the context of
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Figure 2. Dependency parse of a T = 7 word sentence.

global probabilistic models specified over dependency
pairs (Paskin, 2001) or spanning trees (Klein & Man-
ning, 2004; Smith & Eisner, 2005). However, there
is an alternative, popular method for producing de-
pendency trees in a supervised setting: shift-reduce
parsing (Nivre, 2003; Sagae & Lavie, 2005).

6.1. Shift-reduce dependency parsing

Shift-reduce dependency parsing (Nivre, 2003) is a left-
to-right parsing algorithm that operates by maintain-
ing three state variables: a stack S, a current posi-
tion i and a set of arcs A. The algorithm begins with
〈S, i, A〉 = 〈∅, 1, ∅〉: the stack and arcset are empty and
the current index is 1 (the first word). The algorithm
then proceeds through a series of actions until a final
state is reached. A final state is one in which i = T , at
which point the set A contains all dependency edges
for the parse. Denote by i|I a stack with i at the head
and stack I at the tail. There are four actions:

LeftArc: 〈t|S, i, A〉 −→ 〈S, i, (i, t)|A〉, so long as there
does not exist an arc (·, t) ∈ A. (Adds a left depen-
dency to the arc set between the word t at the top of
the stack and the word i at the current index.)

RightArc: 〈t|S, i, A〉 −→ 〈i|t|s, i + 1, (t, i)|A〉, so long as
there is no arc (·, i) ∈ A. (Adds a right dependency
between the top of the stack and the next input.)

Reduce: 〈t|S, i, A〉 −→ 〈S, i, A〉, so long as there does ex-
ist an arc (·, t) ∈ A. (Removes a word from the stack.)

Shift: 〈S, i, A〉 −→ 〈n|S, i+ 1, A〉. (Place item on stack.)

This algorithm is guaranteed to terminate in at most
2T steps with a valid dependency tree (Nivre, 2003),
unlike standard probabilistic algorithms that have a
time-complexity that is cubic in T (McDonald & Satta,
2007). The advantage of the shift-reduce framework is
that it fits nicely into Searn. However, until now, it
has been an open question how to train a shift-reduce
model in an unsupervised fashion. The techniques de-
scribed in this paper give a solution to this problem.

6.2. Experimental setup

We follow the same experimental setup as (Smith &
Eisner, 2005), using data from the WSJ10 corpus (sen-
tences of length at most ten from the Penn Treebank
(Marcus et al., 1993)). The data is stripped of punctu-
ation and parsing depends on the part-of-speech tags,

Table 2. Accuracy on training and test data, plus number
of iterations for a variety of dependency parsing algorithms
(all unsupervised except for the last two rows).

Algorithm Acc-Tr Acc-Tst # Iter
Rand-Gen 23.5 ±0.9 23.5 ±1.3

Rand-Searn 21.3 ±0.2 21.0 ±0.6

K+M:Rand-Init 23.6 ±3.8 23.6 ±4.3 63.3
K+M:Smart-Init 35.2 ±6.6 35.2 ±6.0 64.1
S+E:Length 33.8 ±3.6 33.7 ±5.9 173.1
S+E:DelOrTrans1 47.3 ±6.0 47.1 ±5.9 132.2
S+E:Trans1 48.8 ±0.9 49.0 ±1.5 173.4
Searn: Unsup 45.8 ±1.6 45.4 ±2.2 27.6
S+E: Sup 79.9 ±0.2 78.6 ±0.8 350.5
Searn: Sup 81.0 ±0.3 81.6 ±0.4 24.4

not the words. We use the same train/dev/test split
as Smith and Eisner: 5301 sentences of training data,
531 sentences of development data and 530 sentences
of blind test data. All algorithm development and tun-
ing was done on the development data.

We use a slight modification to SearnShell to facili-
tate the development of our algorithm together with a
multilabel logistic regression classifier, MegaM.2 Our
algorithm uses the following features for the tree-based
decisions (inspired by (Hall et al., 2006)), where t is
the top of the stack and i is the next token: the parts-
of-speech within a window of 2 around t and i; the pair
of tokens at t and i; the distance (discretized) between
t and i; and the part-of-speech at the head (resp. tail)
of any existing arc pointing to (resp. from) t or i.
For producing word i, we use the part of speech of i’s
parent, grandparent, daughters and aunts.

We use Searn with a fixed β = 0.1. One sample
is used to approximate expected losses. The devel-
opment set is used to tune the scale of the prior vari-
ances for the logistic regression (different variances are
allowed for the “produce tree” and “produce words”
features). The initial policy makes uniformly random
decisions. Accuracy is directed arc accuracy.

6.3. Experimental results

The baseline systems are: two random baselines (one
generative, one given by the Searn initial policy),
Klein and Manning’s model (Klein & Manning, 2004)
EM-based model (with and without clever initializa-
tion), and three variants of Smith and Eisner’s model
(Smith & Eisner, 2005) (with random initialization,
which seems to be better for most of their mod-

2SearnShell and MegaM are available at http://searn.
hal3.name and http://hal3.name/megam, respectively.
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els). We also report an “upper bound” performance
based on supervised training, for both the probabilistic
(Smith+Eisner model) as well as supervised Searn.

The results are reported in Table 2: accuracy on the
training data, accuracy on the test data and the num-
ber of iterations required. These are all averaged over
10 runs; standard deviations are shown in small print.
Many of the results (the non-Searn results) are copied
from (Smith & Eisner, 2005). The stopping criteria
for the EM-based models is that the log likelihood
changes by less than 10e − 5. For the Searn-based
methods, the stopping criteria is that the development
accuracy ceases to increase (on the individual classifi-
cation tasks, not on the structured prediction task).

All learned algorithms outperform the random algo-
rithms (except Klein+Manning with random inits).
K+M with smart initialization does slightly better
than the worst of the S+E models, though the differ-
ence is not statistically significant. It does so need-
ing only about a third of the number of iterations
(moreover, a single S+E iteration is slower than a sin-
gle K+M iteration). The other two S+E models do
roughly comparably in terms of performance (strictly
dominating the previous methods). One of them (“De-
lOrTrans1”) requires about twice as many iterations as
K+M; the other (“Trans1”) requires about three times
(but has much high performance variance). Unsuper-
vised Searn performs halfway between the best K+M
model and the best S+E model (it is within the error
bars for “DelOrTrans1” but not “Trans1”).

Nicely, it takes significantly fewer iterations to con-
verge (roughly 15%). Moreover, each iteration is quite
fast in comparison to the EM-based methods (a com-
plete run took roughly 3 hours on a 3.8GHz Opteron
using SearnShell). Finally, we present results for the
supervised case. Here, we see that the Searn-based
method converges much more quickly to a better solu-
tion than the S+E model. Note that this comparison
is unfair since the Searn-based model uses additional
features (though it is a nice property of the Searn-
based model that it can make use of additional fea-
tures). Nevertheless we provide it so as to give a sense
of a reasonable upper-bound. We imagine that includ-
ing more features would shift the upper-bound and the
unsupervised algorithm performance up.

7. A Semi-Supervised Version

The unsupervised learning algorithm described above
naturally extends to the case where some labeled data
is available. In fact, the only modification to the al-
gorithm is to change the loss function. In the unsu-
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Figure 3. Parsing accuracy for semi-supervised, supervised
and unsupervised Searn. X-axis is: (semi/sup) # of la-
beled examples; (unsup) # of unlabeled examples.

pervised case, the loss function completely ignores the
latent structure, and returns a loss dependent only on
the “predict self” task. In the semi-supervised version,
one plugs in a natural loss function for the “latent”
structure prediction for the labeled subset of the data.

In Figure 3, we present results on dependency pars-
ing. We show learning curves for unsupervised, fully
supervised and semi-supervised models. The x-axis
shows the number of examples used; in the unsuper-
vised and supervised cases, this is the total number of
examples; in the semi-supervised case, it is the num-
ber of labeled examples. Error bars are two standard
deviations. Somewhat surprisingly, with only five la-
beled examples, the semi-supervised approach achieves
an accuracy of over 70%, only about 10% behind the
fully supervised approach with 5182 labeled examples.
Eventually the supervised model catches up (at about
250 labeled examples). The performance of the unsu-
pervised model continues to grow as more examples
are provided, but never reaches anywhere close to the
supervised or semi-supervised models.

8. Conclusions

We have described the application of a search-based
structured prediction algorithm, Searn, to unsuper-
vised learning. This answers positively an open ques-
tion in the field of learning reductions (Beygelzimer
et al., 2005): can unsupervised learning be reduced
to supervised learning? We have shown a near-
equivalence between the resulting algorithm and the
forward-backward algorithm in hidden Markov mod-
els. We have shown an application of this algorithm
to unsupervised dependency parsing in a shift-reduce
framework. This provides the first example of unsu-
pervised learning for dependency parsing in a non-
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probabilistic model and shows that unsupervised shift-
reduce parsing is possible. One obvious extension of
this work is to structured prediction problems with
additional latent structure, such as in machine trans-
lation. Instead of using the predict-self methodology,
one could directly apply a predict-target methodology.

The view of “predict the input” for unsupervised
learning is implicit in many unsupervised learning ap-
proaches, including standard models such as restricted
Boltzmann machines and Markov random fields. This
is made most precise in the wake-sleep algorithm (Hin-
ton et al., 1995), which explicitly trains a neural net-
work to reproduce its own input. The wake-sleep al-
gorithm consists of two phases: the wake phase, where
the latent layers are produced, and the sleep phase,
where the input is (re-)produced. These two phases
are analogous to the predict-structure phase and the
predict-words phase in unsupervised Searn.
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