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Foreword
Image Processing in embedded devices has been an area of growing interest with the
revolution of digital imaging devices since the last decade of the 20th century and it will
continue to expand to new frontiers in this century. Despite its relevance, there is not, as
far as I know, a comprehensive publication that address this topic encompassing practical
aspects of image processing design.

With chapters contributed by both experienced researchers from academia as well as
researchers and engineers from industry, the present publication covers fundamental as-
pects of image processing in embedded devices such as exposure correction, auto-focus,
color rendition, noise reduction, demosaicing, encoding, red-eye removal, image catego-
rization and presents relevant quality metrics and also recent trends in imaging.

The editors have done an excellent job of bringing out contributors that work with
the challenges of finding solutions and also implementing image processing solutions for
embedded imaging devices in a daily basis with continuous spread across all relevant
operational aspects for an imaging system.

I believe, the present publication is going to be beneficial not only to imaging and en-
gineering students but also be a reference for academic researchers and engineers working
in imaging industry.

This publication is also unique because it moves away form the traditional paper book
for technical publications and follows the trend of electronic book. This makes the pub-
lication more accessible, more portable with current e-readers in the market, potentially
more environment friendly without ever going out of print. Electronic publications
also attribute such language accessibility by electronic translations and text-to-speech
software capabilities.

It is a great pleasure for me to write a foreword for this prestigious, multi-authored,
international publication on a topic that I believe is very relevant to the imaging industry.
Finally, I would like to compliment the editors and contributors for their effort in making
this publication a great success.

Francisco Imai, Ph.D.
Principal Scientist

Canon Development Americas, Inc.
3300 North First Street

San Jose, CA, 95134 USA
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Preface
Embedded imaging devices, such as digital still and video cameras, mobile phones, per-
sonal digital assistants, and visual sensors for surveillance and automotive applications,
make use of the single-sensor technology approach. An electronic sensor (Charge Cou-
pled Device - CCD or Complementary Metal-Oxide-Semiconductor - CMOS) is used to
acquire the spatial variations in light intensity and then uses image processing algorithms
to reconstruct a color picture from the data provided by the sensor. Acquisition of color
images requires the presence of different sensors for different color channels. Manufac-
turers reduce the cost and complexity by placing a color filter array (CFA) on top of a
single sensor, which is basically a monochromatic device, to acquire color information of
the true visual scene.

The overall performance of any device are the result of a mixture of different com-
ponents including hardware and software capabilities and, not ultimately, overall design
(i.e., shape, weight, style, etc.).

This book is devoted to cover algorithms and methods for the processing of digital im-
ages acquired by single-sensor imaging devices. Typical imaging pipelines implemented
in single-sensor cameras are usually designed to find a trade-off between sub-optimal
solutions (devoted to solve imaging acquisition) and technological problems (e.g., color
balancing, thermal noise, etc.) in a context of limited hardware resources. State of the art
techniques to process multichannel pictures, obtained through color interpolation from
CFA are very advanced. On the other hand, not too much is known and published about
the application of image processing techniques directly on CFA images, i.e. before the
color interpolation phase.
The various chapters of the book cover all aspects of algorithms and methods for the pro-
cessing of digital images acquired by imaging consumer devices. More specifically, we
will introduce the fundamental basis of specific processing into CFA domain (demosaic-
ing, enhancement, denoising, compression). Also ad-hoc matrixing and color balancing
techniques devoted to preprocess input data coming from the sensor will be treated. In
almost all cases various arguments have been presented in a tutorial way in order to pro-
vide to the readers a comprehensive overview of the main basis of each involved topics.
All contributors are well renowned experts in the field as demonstrated by the number of
related patents and scientific publications.

The main part of the book analyzes the various aspects of the imaging pipeline from
the CFA data to image and video coding. A typical imaging pipeline is composed by two
functional modules (pre-acquisition and post-acquisition) where the data coming from
the sensor in the CFA format are properly processed. The term pre-acquisition is referred
to the stage in which the current input data coming from the sensor are analyzed just to
collect statistics useful to set parameters for correct acquisition.

The book containsalso a number of chapters that provide solution and methods to
address some undesired drawbacks of acquired images (e.g., red-eye, jerkiness, etc.); an
overview of the current technologies to measure the quality of an image is also given.
Just considering the impressive (and fast) growth in terms of innovation and available
technology we conclude the book just presenting some example of solution that makes
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use of machine learning for image categorization and a brief overview of recent trends
and evolution in the field.

Catania (Italy), June 2010.

Sebastiano Battiato
Arcangelo Ranieri Bruna
Giuseppe Messina
Giovanni Puglisi
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Fundamentals and HW/SW Partitioning

S. Battiato, G. Puglisi
Image Processing Lab, University of Catania, Italy.

A. Bruna, A. Capra, M. Guarnera
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

Abstract: The main goal of this Chapter is devoted to provide all the fundamental basis related
to the involved technological issues relative to the single-sensor imaging devices. A rough under-
standing of the overall ingredients of a typical imaging pipeline is important also to consider the
performance of any imaging devices, from low to high level, as the result of several components
that run together to compose a complex system. The final image/video quality is the result of a
certain number of design choices, that involve, in almost all cases, all aspects of the hardware and
software technology. As briefly stated in the preface, the book aims to cover all aspects of algo-
rithms and methods for the processing of digital images acquired by imaging consumer devices.
More specifically, we will introduce the fundamental basis of specific processing into CFA (Color
Filter Array) domain such as demosaicing, enhancement, denoising, compression together with
ad-hoc matrixing, color balancing and exposure correction techniques devoted to preprocess input
data coming from the sensor. We conclude the Chapter just including some related issues related to
the intrinsic modularity of the pipeline together with a brief description of the hardware/software
partitioning design phase.

1.1 The Simplest Imaging Pipeline
A typical imaging pipeline (see Fig.(1.1)) is composed by two functional modules (pre-
acquisition and post-acquisition) where the data coming from the sensor in the CFA for-
mat are properly processed. The term pre-acquisition is referred to the stage in which the
current input data coming from the sensor are analyzed just to collect statistics useful to
set parameters for correct acquisition. In some cases several application can be present.

The initial data is composed by a matrix of data, coming from the sensor. For each
pixel only a single chromatic value is acquired just using suitable CFA, typically arranged
in the classic Bayer format. We omit all the details about optics and sensor capabilities
that will be deeply treated in the next Chapter. Starting from the CFA data ad-hoc algo-
rithms and methods can be used to obtain, at the end of the process, a compressed RGB
version of the acquired scene. Some high-end devices allow the saving of the input data
without applying any kind of processing, including compression, just providing as output
an intermediate format, called ”raw” format, where each pixel contains values very simi-
lar to those acquired by the sensor in the corresponding photosite. In the remaining cases,
an imaging pipeline is needed to reconstruct (or recover) the missing data, maximizing
whenever is possible, the related image quality. In the following Subsections we briefly
summarize, with some examples, the typical (and mandatory) processing steps, just pro-
viding some initial overview of the relative algorithms that will be treated in more details
in the rest of the book.

As depicted in Fig.(1.1) there could be a series of functional blocks devoted to im-

S. Battiato, A.R. Bruna, G. Messina and G. Puglisi (Eds)
All right reserved - c© 2010 Bentham Science Publisher Ltd.
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Figure 1.1 : Typical imaging pipeline. Data coming from the sensor (typically in
Bayer format) are first analyzed to collect useful statistics for parameters setting (pre-
acquisition) and then properly processed in order to obtain, at the end of the process, a
compressed RGB image of the acquired scene (post-acquisition and camera applications).

plements some specific camera applications: This functionalities are not mandatory and
usually include solution for panoramic, resizing, red-eye removal, etc. Some of them
could also require the multiple acquisition of the input scene at different exposure and/or
focus settings (e.g., bracketing). An example of Bayer image, acquired by the monocro-
matic sensor, and the corresponding RGB image, obtained at the end of the pipeline, is
shown in Fig.(1.2) and in Fig.(1.3).

Other related info can be found on [1], that is mainly devoted to cover aspects relative
to optics and sensors, and [2] that addresses specific research challenges and recent trends.

1.1.1 Exposure Setting
Like in old fashioned film cameras digital sensors need to be correctly exposed during
acquisition. The pixel (picture element) is compound of an electronic device sensitive to
the light (photo-diode or photo-transistor) which collects and translates incident photons
(the electromagnetic element of the light) to electric signal. This signal is stored into
an accumulation cell and, after an analog to digital conversion, represents the final pixel
value (for detailed explanation see Chapter 2).

This basic light acquisition device has a few constraints: light sensitivity is fixed and
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(a)

(b)

Figure 1.2 : An example of Bayer image (a) acquired by the monochromatic sensor and
the corresponding RGB image (b) obtained at the end of the pipeline.

Fundamentals and HW/SW Partitioning Image Processing for Embedded Devices   3 

   



(a) (b)

Figure 1.3 : An enlarged detail of Fig.(1.2) (a) acquired by the monochromatic sensor
and the corresponding RGB image (b) obtained at the end of the pipeline.

it may be affected by noise (i.e., any kind of not actual information wrongly converted
as useful information). Usually noise level is limited and not dangerous until the actual
signal is adequate and significantly greater, i.e., high level of Signal to Noise Ratio (SNR).

To guarantee this fundamental principle each photosite (pixel) must be configured so
that it acquires the correct level of light and thus the correct level of signal: varying the
light intensity of the scene there must be a way to change the capability of the sensor to
correctly and properly store in its cell the right level of light. This control is performed by
the integration time. It represents the time during which the photo-element is acquiring
and converting light into electrical charge. The lower the light intensity of the scene
the higher the integration time. By changing this integration time a given scene digital
acquisition can be under-exposed (too dark, too short integration time), over-exposed (too
lit, too long integration time) or correctly exposed.

Two cases must be avoided or considered extreme cases: no accumulation, which cor-
responds to black, and over-accumulation (also known as saturation) which corresponds
to extreme light or white. For actual black or white it is correct that the pixel assumes
these values but they can also come out from a bad exposure (black from under-exposition
and white from over-exposition). Also, there is no way to control integration time sep-
arately for each pixel of the sensor and this means that all the pixels of the sensor are
exposed with the same integration time, although frame by frame it may change to adapt
to variations of light which may occur in real scenes. Usually the integration time value
is chosen so that the mean brightness of a picture is around the mid-range of the possible
values (e.g., for a 8 bit per pixel image there are 256 different light levels and a correct
exposed image has a mean brightness of 128).

Finally, it is not always possible to select an appropriate integration time for each
scene. Too long or short integration time are not feasible because other problems may
occurs and affect the SNR (for details see Chapters 2, 3 and 6). Also, integration time
may be lower-limited by the framerate and/or by a safe value which aims to reduce motion
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blur effects. Motion blur is caused by long integration time and moving objects in the
acquisition scene or hand-shaking. It is typical in low-light acquisitions and for this reason
often a flash is used in such a situation.

Each time a lower threshold limits the integration time the only way to properly read
the minimum accumulated information of the cell is to use a multiplicative gain to amplify
the information to a usable value.

In summary, a good exposure control module is compound of:

• an appropriate module which estimates the light intensity of the scene and prop-
erly settles the correspondent integration time, avoiding under-exposition or over-
exposition;

• an appropriate gain control which furnishes support and compensates the limits of
the integration time; when selecting a proper balance between integration time and
gains priority goes to the former;

• a method to identify actual black and white regions, assumed that the rest of the
identification and proper compensation is demanded to following modules in the
image generation pipeline (see Chapter 4 for additional details);

• a loop with other modules which apply additional gains to the signals (like AWB,
see Chapter 5);

• and additional optional module to control and avoid motion blur; usually in litera-
ture this methodology goes with the name of AutoISO.

1.1.2 White Balance
One of the most challenging processes that affects perceived image quality in a digital
camera is the correct color reproduction. Human visual system is able to remove color
casts: an object appears to our eyes with the same color under different illuminant con-
ditions. On the contrary the sensor simply acquires raw data and is not able to cope
with real scene illumination variability. For instance a white paper in outdoor or indoor
environment can be recorded by the sensor with bluish or reddish colors.

In order to cope with these problems a lot of techniques have been developed. High
end cameras typically provide a variety of presets related to the most common light
sources (tungsten, fluorescent, daylight, flash, etc.). Moreover white balance parame-
ters can be set, for future photos, taking a picture of a known gray reference under the
same illumination source (custom white balance).

All the techniques above described need a close interaction with the user in order
to properly work. On the contrary auto white balance techniques try to guess the cor-
rect illumination properties and remove color casts without user interaction. These tech-
niques, based on strong assumptions on scene reflectance distribution, have been also
implemented in low cost devices (e.g., smart phone) and will be in depth described later
in Chapter 5.

Fundamentals and HW/SW Partitioning Image Processing for Embedded Devices   5 

   



1.1.3 Noise Reduction

The perceived image quality is deeply influenced by image noise (named by analogy with
unwanted sound). These unwanted fluctuations, if not properly managed, heavily degrade
image quality. Different noise sources, with different characteristics, are superimposed
to the image signal: photon shot noise, dark current noise, readout noise, reset noise,
quantization noise, etc.

Although many efforts have been done by manufacturers to reduce the presence of
noise in imaging devices it is still present and can be considered unavoidable in critical
situations. For instance, low light conditions together with low integration time, produce
very low SNR (signal to noise ratio), very few photon were captured, making really dif-
ficult obtaining pleasing photos. This physical limit does not depend only on the sensor
characteristics but it is strictly related to the nature of light. Moreover the increasing of
the number of pixels and the limited size of the embedded devices, implying the decreas-
ing of the pixel size, produces further problems. Small pixels, acquires less photons with
respect to larger pixels. Less useful signal implies then noisier picture.

In order to cope with these problems smart filters must be designed. These filters
must be able to estimate image noise characteristics (e.g., mean and standard deviation
if a Gaussian model is used), and then remove unwanted noise without affecting image
details.

Finally, it should be noted that noise reduction can be performed during the vari-
ous stages of the pipeline. Some approaches works on RGB images, others directly on
Bayer data. The latter typically provides some advantages (demosaicing step typically
introduces nonlinearities that make difficult noise reduction). Further details about noise
reduction algorithms will be provided in Chapter 6.

1.1.4 Demosaicing

Digital cameras, in order to reduce costs and complexity, acquire images by means of a
monochromatic sensor covered by a CFA (color filter array). A lot of CFA have been
developed but the most common is the Bayer pattern. This simple CFA, taking into ac-
count human visual system characteristics (human eyes are more sensitive to green with
respect to the other primary colors), contains twice as many green as red or blue sen-
sors. Some spatially undersampled color channels (three in the Bayer pattern) are then
provided by the sensor and the full color information is reconstructed by color interpo-
lation algorithms (demosaicing). Demosaicing is a very critical task. A lot of annoying
artifacts that heavily degrade picture quality can be generated in this step: zipper effect,
false color, moiré effect, etc. Simple intra-channel interpolation algorithms (e.g., bilinear,
bicubic) cannot be then applied and more advanced solutions (inter-channel), both spatial
and frequency domain based, have been developed. In embedded devices the complexity
of these algorithms must be pretty low. Demosaicing approaches are not always able to
completely eliminate false colors and zipper effects, thus imaging pipelines often include
a post-processing module, with the aim of removing residual artifacts. Further details
about demosaicing algorithms will be provided in Chapter 7.
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1.1.5 Color Matrixing

The Color Matrix sub-system, also known as Color Calibration, aims to convert the color
response of the acquisition device to a standard color space. Usually the standard RGB
(sRGB) color space is used, according to the ITU-R BT.709 directive. This transformation
is needed since the spectral sensitivity function of the sensors does not match with the
desired color space. The correction is performed usually according to the formula:

RGBout = A ·RGBin (1.1)

where A is a 3-by-3 matrix, RGBin and RGBout the image before and after color matrix-
ing. The matrix coefficients are not obtained using the effective response. Usually they
are retrieved using optimization methods with real acquisitions. Moreover the constraint
of the white point preservation is usually used. It corresponds to the following constraint
(as better detailed in Chapter 5):

3

∑
j=1

A(i, j) = 1,∀i ∈ {1,2,3} (1.2)

1.1.6 Image Formatting

The data acquired by the sensor have to be processed by the coprocessor or the host mi-
croprocessor, so both the systems must share the same communication protocol and data
format. Moreover, at the end of the image generation pipeline the image must be coded
in a standard format in order to be read by any external device. Usually the sensor pro-
vides the acquired image in the Bayer format. In the past the Bayer data were stored and
transmitted using proprietary format and protocol. Such solution has the drawback that
every customer had to design the same proprietary interface to manage the sensor data.
In the latest years the main companies making, buying or specifying camera modules
proposed a new standard called Standard Mobile Imaging Architecture (SMIA). It allows
interconnecting sensors and hosts of different vendors.

Concerning the output of the coprocessor, several standard formats are available. For
the still images the most frequently used are the Joint Picture Expert Group (JPEG) with
a lossy compression, the Targa Interchange Format (TIF) with a lossless compression. In
the top level cameras the output of the sensors can also be stored directly. In this case
usually a proprietary file format is used (e.g., the Nikon Electronic Image Format (NEF),
the Canon RAW File Format (CRW), etc.). For videos the most used are Motion JPEG,
MPEG-4, H.263 and H.264 standards.

In Chapter 11 the main data formats will be presented. Moreover some techniques
concerning the compression factor control and the error concealment will be introduced.
The compression factor control aims to obtain the file size as close as possible to a target
value whereas the error concealment aims to handle errors in the bit-stream trying to
recover the missing information.
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1.2 HW/SW Partitioning
Cameras embedded in mobile phones are now becoming a commodity supporting appli-
cations like capturing and transmission of still images as well as video clips (Multimedia
Messaging Services). With the increase of network bandwidth (e.g., 3G UMTS) real time
mobile video links will become feasible, enabling new applications like mobile video
telephony and video chat. It has to be noted, that the ease of use of these applications is
of high importance as this is expected to be a crucial requirement for market acceptance
of such new services. Thereby not only quality issues like frame and image stabilization
are to be focused but also the user comfort. The automatic detection and tracking of the
user’s head is such an example, which helps to keep one’s face in view of the camera
during a mobile video telephone conference. But the processing units in imaging devices
should be low-cost, low-power and, at the same time, suitable of supporting the above
mentioned mobile communication applications. In order to satisfy cost and performance
requirements, imaging device systems are generally implemented with a combination of
different components, from custom designed accelerators to standard processors. These
components can vary in their area, speed, methodology to program, and the system func-
tionality is partitioned amongst the components to best utilize this tradeoff. However,
for performance critical designs, it is not sufficient to only implement the critical sec-
tions as custom-designed high-performance hardware, but it is also necessary to pipeline
the system at several levels of granularity. The custom designed accelerators can be im-
plemented by using Reconfigurable hardware devices, such as Field Programmable Gate
Arrays (FPGAs). The HW/SW partitioning (i.e., the definition of an architecture where
the algorithms are smartly split as hardware accelerators and software modules) is not as
straightforward as designing either software or hardware, since the application is intrin-
sically a hardware/software co-design. For instance, while an application implemented
on an FPGA can be one to two orders of magnitude faster than the application imple-
mented in software, processing in hardware incurs additional costs that are not required
for software. Some of these costs are hardware initialization costs, extra processing steps
for easy processing of the border cases, and communication of the image to and from the
reconfigurable device. The runtime of image processing applications varies with image
size, so processing small images on an FPGA might not be efficient due to the additional
overhead. The imaging accelerators are often designed to create data-paths that are capa-
ble to process several image pixels concurrently. For the definition of these data path can
be used some well-known design approaches like:

• SIMD parallelism. Typically the data-path processes N pixels in parallel or, for
some binary operation, 8xN pixels. This type of processing is well known from
multi-media extensions used in general-purpose CPUs.

• Deeper arithmetic pipelines. These enable the encoding and execution of complex
arithmetic operations with a single microinstruction.
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Notions about Optics and Sensors
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Abstract: This Chapter gives information about the optics and the sensor in an image acquisition
system. Optic is the first stage of the image acquisition system and is composed by one or more
lenses aiming to concentrate the light in the physical sensor obtaining an in focus image. It is one
of the most expensive parts of an imaging system. In mobile cameras usually a lens is compound
of a system of plastic and glass lenses stacked together, while in single lens reflex cameras (SLR)
a group of several glass lenses system is employed to reduce image artifacts. In this Chapter
an overview of the lenses will be discussed. Moreover, some typical artifacts will be introduced
(e.g., cross talk and chromatic aberration). The sensor is the part that converts the optical im-
age (light) to an electric signal. There are several kinds of sensors depending on the technology
(CCD - Charge Coupled Device and CMOS - Complementary MetalOxideSemiconductor), on the
color filter array (Bayer , Foveon, 3CCD, Panchromatic), on the transducer function (LDR - low
dynamic range, WDR - wide dynamic range and HDR - high dynamic range sensors).

2.1 Introduction
In Fig.(2.1) is reported the classical ”yellow duck” system that describes the entire pro-
cess from the real world, the system acquisition, the digital processing up to the final
digitally compressed image. The first element, the lens and its working within the com-
plete system, will be deeply studied in Chapter 4. This Chapter is mainly devoted to the
explanation of the parts inside the box Image Sensor, the silicon sensor, its surface, its
technology and its basic element: the pixel (picture element).

Image Sensor

Recovery Engine

LensLensLens
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Processor

Colour
Engine

Anti-vignette,
Spatial
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Etc.

Encoding
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Lenses

Colour Filter
Array

Imaging
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Figure 2.1 : The yellow duck system: from the real world to the final digital picture.
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Anatomy of the Active Pixel Sensor Photodiode
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Figure 2.2 : Example of a pixel structure.

In the following Subsections will be explained the overall description of the sensor
system, the different sensor technologies and the color patterns used in the real devices.

2.2 The Sensor System

In Fig.(2.2)1 is reported a classical structure of a pixel inside a sensor. All the related
compounding elements are visible: micro-lens, electronic part and photo-sensible area.
In the following Subsections all these elements are analyzed, describing their strongness
and weakness and their contribute in the resulting final image.

2.2.1 Microlenses

One of the most important aspect of a imaging sensor is the sensitivity to capture the light
(light sensitivity). As we will see in detail in Sec.2.3 it mainly depends by the design
of the photo-sensible area, Fig.(2.2), and, for equal design and technology, by the size
of this area. The ratio between the photosensitive area and the pixel size is indicated as
fill factor (it may vary from 30% to 100%). When this fill factor is too low and needs
to be improved the microlenses are used. They are individual lenses deposited on the
surface of each pixel to focus light on the photosensitive area. Microlenses can boost
effective fill factor (i.e., the ratio of the active refracting area to the total area occupied
by the lens array) to approximately 70%, improving sensitivity (but not charge capacity)

1Image source: http://digitalcontentproducer.com/hdhdv/depth/cmos tech hdv 10092006
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Figure 2.3 : Strategies to compensate different pixels fill factor: (a) Pixel with good fill
factor, all the entering light is captured; (b) Pixel with poor fill factor, a micro-lens is used
to converge the entering light to the useful region.

considerably. In Fig.(2.3)2 is illustrated the difference of a pixel with and without micro-
lens.

2.2.2 Lenses and Microlenses Aberrations

Crosstalk

In an ideal pixel charging [2], all the photons intersecting at any angle a filter element in
the CFA are color filtered and accumulated in the photodetector under the filter element
as shown in Fig.(2.4(a)). Optical crosstalk results when a photon, intersecting at an angle
with a filter element in the CFA, enters the adjacent pixel’s photodetector (photodiode)
rather than the photodetector under the filter element. This can contaminate the adjacent
pixel’s charge packet, Fig.(2.4(b)). Moreover there may be also electrical crosstalk, which
happens when photons passing through the red filter travel further into the silicon before
generating electrons. This leads to a non-uniform response to the different colors, a loss
of charge into the substrate and electrons wandering into the wrong pixel well as shown
in Fig.(2.4(c)).

Chromatic Aberration

Chromatic Aberration (CA) is the term for an imaging system placing incorrect colors
in at least some locations within the image. CA is caused by a lens having different
refractive indices to different wavelengths of light. This implies the color channels to
focus differently, and hence CA creates visible color fringes or colored blurs. An example
of CA is shown in Fig.(2.5). Such aberration is typically diffused in the entire image, but

2Image source: [1]
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Figure 2.4 : Different types of crosstalk: (a) In this case all the entering light is correctly
captured by the detector, there is not crosstalk effect; (b) Optical crosstalk: some filtered
light is not captured by the respective detector but goes to an adjacent detector, in this
case red light is collected in the green collector; (c) Electrical crosstalk: some photons
are dispersed in the silicon and collected by a different detector, in this case a red photon
travelling in the silicon is collected by the adjacent green detector.
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Figure 2.5 : Particular of an image affected by CA.
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Figure 2.6 : Longitudinal and lateral aberrations.

it is mostly observed near high contrast edges. CA is usually classified in two types (see
Fig.(2.6)):

• Longitudinal aberration;

• Lateral aberration (also known as aberration of magnification).

Longitudinal aberration causes loss of focus in the image plane according to the wave-
length, and lateral aberration occurs due to the shift in the focus. The former causes blur
distortion and the latter causes shift distortion of the color channels. Imaging devices
usually focus the image plane based on the Green channel, as shown in Fig.(2.7), because
it is a dominant factor for brightness. Therefore the Green channel exhibits little CA as
compared to the other two color channels.

The two main methods for correcting chromatic aberration are:

• Lens design for improved optics;
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Figure 2.7 : Distortions of the R and B channels.

• Application of a signal processing method to the acquired image [3, 4].

The first approach is generally expensive and difficult to apply. On the other hand, signal
processing algorithms can correct this defect in a cheap and effective manner.

Simplest techniques measure the chromatic aberration of magnification on standard
patterns, such as chessboard patterns. An example of pattern used for calibration is shown
in Fig.(2.8) (left side). A second lower density chessboard pattern (test image), shown in
Fig.(2.8) (right side), is used for independent validation of the results. In particular as
discussed in [3], the reference information on the standard pattern without chromatic
aberration is prepared in advance, then the standard pattern is actually photographed and
the color shift is detected by comparing this data with the reference information .

Conventional image processing algorithms for correcting chromatic aberration usually
make use of supplementary information about the optical system to calculate the color
shift due to the chromatic aberration of magnification. The technique proposed in [4], tries
to perform the correction of the lateral chromatic aberration by introducing differential
geometric distortion into the color components of the image object. This distortion is
used to substantially cancel the differences in image heights of the red, green and blue
color components of the virtual image formed by the lens element. This is accomplished
by determining one or more color-specific distortion functions (taking into account the
different lateral magnification parameters of lens element for red, green and blue image
planes) which are applied to the geometry of one or more color components. Differential
distortion functions may be applied to the red and blue color components to align them
with the green color component.

Purple Fringing

Although chromatic aberrations can be purple in color under certain circumstances, ”Pur-
ple Fringing” usually refers to a typical imaging device phenomenon that is caused by the
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Figure 2.8 : Chessboard patterns used for calibration (left) and testing (right).

Figure 2.9 : Particular of an image affected by PF.

microlenses. It can be considered as ”chromatic aberration at microlens level”. As a con-
sequence, purple fringing is visible throughout the image frame. An example of image
affected by purple fringing is shown in Fig.(2.9). Edges of contrasty subjects suffer most,
especially if the light comes from behind them. Blooming tends to increase the visibility
of purple fringing. In fact imaging devices usually meter the exposure of the scene so that
in the brightest regions as much charge is accumulated as possible without overflowing
the potential well, so giving the best dynamic range and a response that depends directly
on the amount of light striking the photodiode. The exposure control normally works well
but the metering of the scene is done in some average sense. If the scene contains small
regions where the light is extremely bright compared to the scene average, these bright
regions lead to a very large amount of light being incident on the sensor. This light causes
charge to build up in the sensor until a sufficiently large amount accumulates that it begins
to leak out of the sensor well into the surrounding sensors (blooming effect).

When charge leaks from one photodiode well into surrounding photodiode wells, the
result is a spuriously higher signal in the surroundings. That spurious signal will be
particularly noticeable if the surrounding sensors should be producing no signal because
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Figure 2.10 : Locus of purple in CMY color space.

the scene is dark in these regions. Is thus easier to see the effect of blooming most strongly
at sharp transitions from light to dark. We have already seen that lens aberration will cause
the blue and red components of bright white light to appear at incorrect sensor positions.
Charge leakage magnifies this effect by spreading the sensor response further from the
true position, and the positional error is additionally potentiated by demosaicing

Most of the state of the art algorithms devoted to correct the purple fringe effect
construct a binary map, discriminating overexposed regions from non-overexposed ones.
They detect purple regions close to overexposed areas and desaturate them. Some of these
techniques try to prevent an excessive desaturation, according to the saturation of the sur-
rounding pixels, to provide high quality images. Some other techniques try to identify the
occurrence of purple fringing by detecting magenta and/or cyan color ranges in the Cr Cb
domain, as shown in Fig.(2.10).

An interesting technique [5] for removing purple fringing assumes purple fringe ap-
pearing principally around an overexposed highlight, then the false color degree of each
pixel is calculated, and appropriate correction is performed corresponding to these false
color degrees. A pixel which satisfies the following conditions:

• an overexposed pixel exists around the noticed pixel;

• the noticed pixel exhibits a purple color;

• the noticed pixel has a high saturation.

is determined as a purple fringe pixel. The correction process can be executed by averag-
ing neighboring pixels which do not exhibit a false color.
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Figure 2.11 : Structure of a pixel and its evolution; (a) pixel in its basic structure: photo-
diode and accumulation cell; (b) active pixel, an on site amplification has been added; (c)
active pixel in 4-T configuration: accumulation and reading phases are separated.

2.3 The Sensor Technology

Imaging sensor functionality for digital camera is the same of a film for old camera. It is
used to convert light entering from the lens system to electrical signal which is properly
processed and stored at the end of the pipeline in a standard image format file. The
basic structure of a pixel is reported in Fig.(2.11(a)): it is compound of a photodiode to
convert light to an electrical signal and an accumulation cell (capacitor) and a switch.
This configuration is known as passive pixel. The advantage of this configuration is the
maximization of the fill factor.

Adding a signal amplification to the pixel, it is possible to have an active pixel, as
shown in Fig.(2.11(b)). The amplification system allows to improve the signal level
during the reading process, thus improving the SNR. It is also known as 3-T (3 tran-
sistors) configuration. The charge to voltage conversion within the pixel improves output
impedance but it causes a lower fill factor, because now part of the pixel surface is dedi-
cated to two switches and an amplifier. A sensor compound of such a kind of pixels goes
by the name of Active Pixel Sensor (APS) [6].

Nevertheless this configuration has the accumulation and the reading stages not sep-
arated and thus, during the reading process, noise coming from the accumulation part is
amplified and transmitted. For this reason a widely used configuration is the 4-T config-
uration, as shown in Fig.(2.11(c)). In this case accumulation and reading are separated,
improving the final SNR.

2.3.1 CCD and CMOS Sensors

First imaging sensors were introduced around 1970 and were based on CCD (Charge
Coupled Device) technology. As for CMOS sensor they are silicon based and share sim-
ilar materials. However CCD sensors have been specifically designed to capture images
and have 40 years of development. Until a few years ago they were the state of the art as
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imaging sensors (Table 2.1) having excellent performances in terms of image quality, low
noise, high fill factor, high light sensitivity and low dark current3 [1, 7]. Differently from
CMOS devices, CCD requires dedicated clock drivers with high voltage amplitude (10V),
high bias voltages (up to 15V) and has the disadvantage that pixels are read sequentially,
as shown in Fig.(2.12). This also forced developers to split sensor from the image copro-
cessor (Fig.(2.13)) with high cost due to a different fabrication technology (often a sensor
maker is not a coprocessor maker) and bigger dimension of the CCD sensor (with the
consequence that it requires more space into the device).

For this reason at the end of 1990 decade chip makers started to realize first CMOS
image sensors, lower in quality than a CCD sensor and thus mainly dedicated to low cost
market segments [1,7,8]. However in the last years this trend is changed and now CMOS
sensor have a quality vs cost ratio greater than a CCD and many professional SLR use
CMOS sensors.

Table 2.1 : CCD and CMOS performances.

CCD CMOS
Low dark current Low power dissipation
Uniform conversion gain Scaling to high resolution formats
Low temporal noise Compatibility with camera system integration
Low Fixed Pattern Noise Low cost
Quantum efficiency
Low Cross Talk
Colorimetric accuracy
Signal to Noise Ratio

Let’s have a quick difference between the CCD and the CMOS image sensor.
Charge-Coupled Device:

• The charge is actually transported across the chip and read at one corner of the
array;

• Use of a special manufacturing process to create the ability to transport charge
across the chip without distortion;

• Higher Fill Factor.

Complimentary Metal-Oxide Semiconductor:

• Several transistors at each pixel amplify and move the charge using more traditional
wires;

3The term dark current indicates a residual current that pass through the photo-sensitive area also in
absence of light. This is stored into the charge cell and produces false signal, i.e., noise, highly visible in
low light conditions.
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Figure 2.12 : Comparison of the reading mode: by charge transfer (CCD) and by address
direct access (CMOS).

• Is more flexible because each pixel can be read individually;

• Use of the same traditional manufacturing processes to make most microprocessors;

• Easy integration;

• Lower Fill Factor.

Fig.(2.12)4 shows the different reading mode between a CCD and a CMOS. In the
former data is read by transferring the pixel value to adjacent pixels in column wise order
until the end of the column is reached, in the latter pixel value is directly read by address-
ing actual pixel location. This means that a broken pixel in CCD sensor may affect the
readout process of an entire column while in a CMOS sensor it affects only its value leav-
ing safe the rest of the column. Also, the reading process in a CCD is ”sequential” and
thus slower than the correspondent ”parallel” process of the CMOS. Also, CCD sensor
technology is different from the technology used in the image signal processor (usually
CMOS) and the sensor itself is larger than a CMOS sensor, while a CMOS sensor uses
the same technology on the processor. As a result, as shown in Fig.(2.13)5, CMOS sensor
and processor can be placed together saving space, transmission problems and circuits.

3CCD

To take advantage of a full color acquisition some systems use three sensor, one for each
color component so that for each pixel all color components are acquired. A prism is used
to send the input image from the optical system to the sensors. For best image quality and
ease of use, separation prisms should have a few simple characteristics:

• All output images should be oriented in the same direction as the input image;

4Image source: [1]
5Image source: [1]
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Figure 2.14 : Structure of a 3CCD device: input image is sent to three sensors, one for
each color sensor.

• All channels must have the same optical path length;

• The prism transmission should handle all polarizations with good uniformity;

• All coatings should be protected from the environment;

• Ample space should be available for mounting of filters and sensors.

This kind of system is often used in professional video recorder. In Fig.(2.14)6 is re-
ported a classical structure of a 3CCD acquisition system. Note how the prism is designed
so that each sensor is virtually placed at the same distance from the lens.

6Image source: [1]
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Figure 2.15 : Structure of the Bayer Colour Filter Array: (a) CFA on the sensor surface;
(b) Light split in colour components and affecting different pixels of the sensor.

2.3.2 The CFA and the Bayer Pattern

Each ”pixel” on an imaging device sensor contains a light sensitive photo diode which
measures the brightness of light. Because photodiodes are monochrome devices, they
are unable to select the difference between different wavelengths of light. Therefore, a
”mosaic” pattern of color filters, a color filter array (CFA), is positioned on top of the
sensor to filter out the red, green, and blue components of light falling onto it. Although
GRGB Bayer Pattern is the most common CFA used since 1976, many investigation have
been done to define more performing CFAs [9]. Fig.(2.15)7 represents a classical Bayer
CFA [10] and how color components are acquired by the sensor.

7Image source: http://www.dpreview.com/learn/?/Glossary/Camera System/sensors 01.htm
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The Panchromatic Sensor

Recently Kodak, already inventor of the Bayer format [10], has proposed a new format,
the panchromatic sensor [11]. The advantage of this sensor is that 50% of the pixels are
white (there is not a color filter on top of it) making them sensitive to luminance and
useful in low light. Another important benefit of this structure is that a 2x2 macroblock of
Bayer corresponds to a 4x4 block (Fig.(2.16))8, thus in each block there are more green,
blue and red pixels and, in addition, white pixels which are useful to reconstruct light
intensity.

To understand the improvement of the sensitivity in low light of the panchromatic
sensor we can express light energy, split from RGB components according to ITU-R
BT.601 by the equation:

Y = 0.299R+0.587G+0.114B (2.1)

Applying the above equation to a CFA Bayer macroblock:

(0.299+2×0.587+0.114)/4 = 0.396 (2.2)

which is less than 40% of efficiency; about 60% of photons are lost and absorbed in fil-
ters.

Applying the same equation to a panchromatic macroblock:

(8×1+2×0.299+4×0.587+2×0.114)/16 = 0.698 (2.3)

which means that about 70% of light is captured by the sensor. As a consequence
a panchromatic sensor is 1.76 times more efficient than a Bayer sensor in terms of light
efficiency. Of course light efficiency is not the only point to be analyzed when compar-
ing different sensor patterns. Another interesting point is the image processing pipeline.
Most of the camera sensors in the marked adopt the Bayer format. This means that it
has become a standard de facto. New formats, even if have some advantages, have the
inconvenient of requiring a proper image processing which differs from the classic one.
In Fig.(2.17) is reported the pipeline patented by Kodak in [11]. It differs from a common
pipeline, for example, for the automatic exposure control, noise reduction, demosaicing
(even if some methodologies from Bayer may be reused), color accuracy, aliasing and
sharpening.

The Foveon Sensor

Foveon X3 [12] image sensors have three layers of pixels. The layers of pixels are em-
bedded in silicon to take advantage of the fact that red, green, and blue light penetrate

8Image source: http://pluggedin.kodak.com/default.asp?item=624876
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Figure 2.16 : Panchromatic sensor structure: (a) classical Bayer CFA sensor surface; (b)
new Panchromatic surface, 50% of the surface is dedicated to white pixels; (c) equivalent
panchromatic macroblock is compound of a classical RGrGbB macroblock plus a white
macroblock; (d) color image decomposition, panchromatic sensor produces an image
similar to human vision.
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Figure 2.17 : Panchromatic image generation pipeline as patented by Kodak [11].

silicon to different depths forming the first and only image sensor that captures full color
at every point in the captured image. Fig.(2.18)9 shows the different penetration of the
light through the sensor and the relative displacement of the three color planes on top of
the sensor surface. As a consequence this sensor does not require color demosaicing and,
compared to a Bayer sensor, the number of pixels is sensibly reduced for the same image
quality (1 Foveon = 4 Bayer pixels).

This triple vertical junction ’Foveon type’ allows pixels to be bigger and so collect
more light. On the other hand this stack can easily generate color crosstalk which can
limit SNR performance. In fact blue channel has large green and red signals penetration,
green channel has large red signal penetration while red channel is the only channel with
low crosstalk. Image processing for Foveon sensors needs a strong crosstalk digitally
removing and dedicated color processing to restore color accuracy. As a consequence
the process control needs particular attention, as junction depth and doping highly affects
color accuracy.

2.3.3 Different Dynamic Range Sensors

Real world scenes can contain a very wide dynamic range, as briefly summarized in Ta-
ble 2.2 (note that the lux is the standard unit of luminous emittance). Usually normal
sensors are not able to acquire a real world scene, especially if the dynamic range is very
high, as can be an outdoor scene with mixed sunny and shadow zones. Measuring the dy-
namic range (DR) in dB with the formula shown below, these values can easily go above
60 dB in the real scenes.

DR(dB) = 20 · log10
maxLux
minLux

(2.4)

9Images source: http://www.foveon.com
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Figure 2.18 : Structure of the Foveon sensor. (a) color planes are stacked together; (b)
comparison between a Foveon sensor and a CCD/CMOS CFA Sensor.
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Figure 2.19 : Real world dynamic ranges expressed in dB and LDR and HDR sensor
families range.

Table 2.2 : Different light intensity in real world scenes.

New Moon Night 10-5 Lux
Full Moon Night 0.2 Lux
Street Lighting 20 Lux
Bedroom 70 Lux
Classroom, laboratory 400 Lux
Offices 500 Lux
Drawing Table 1000 Lux
Television broadcasting 800 to 1100 Lux
Sun at zenith, summer sunny day 105 Lux

where DR is the dynamic range (in dB), maxLux and minLux are the highest and the low-
est light intensity values in the scene measured in Lux (i.e., the SI unit of illuminance).
Normal sensor are commonly designed to have a linear response and a useful dynamic
range (the max dynamic range able to acquire) of around 60 dB. To design sensor capa-
ble to acquire wider dynamic range designers have been forced to change the response
function of the sensor from linear to not-linear (usually logarithmic) thus implementing
a compression of the dynamic range directly during the storing phase in the sensor. In
Fig.(2.19) is represented a comparison between a normal sensor, also known as Low Dy-
namic Range (LDR) sensor, and a High Dynamic Range (HDR) sensor. In this Figure dB
values represent the ratio between the minimum eV charge which can be stored per sec-
ond in the accumulation cell of the pixel and the maximum value. The dynamic range of
the HDR is 80dB higher than the LDR. Between these two families there is another one,
named Wide Dynamic Range (WDR), characterized by the fact that the sensor response
function is still linear but wider than a LDR sensor.
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2.4 Pixel Size Reduction
Forty years ago, the co-founder of Intel, Gordon Moore, predicted that the speed of pro-
cessors would double every eighteen months. Although the statement is always at the
center of heated discussions among computer scientists, it has been proved to be true and
for this reason it has been named the ”Moore’s Law”. As the technology has improved,
costs have decreased dramatically. Counting the ”pixels per dollar” as a basic measure of
value for a digital camera, there has been a continuous and steady increase in the number
of pixels each dollar buys in a new camera, in accord with the principles of Moore’s Law.
This predictability of camera prices was first presented in 1998 at the Australian PMA
DIMA conference by Barry Hendy and since referred to as ”Hendy’s Law”. In Fig.(2.20)
an overview of the evolution of CMOS imaging sensors data, published at IEDM and
ISSCC [13], is shown10. The bottom curve illustrates the CMOS scaling effects over the
years, as described by ITRS roadmap [15]. The second curve shows the technology node
used to fabricate the reported CMOS image sensors, and the third curve illustrates the
pixel size of the same devices. It should be clear that:

• CMOS image sensors use a technology node that is lagging behind the technology
nodes of the ITRS. The reason for this is quite simple: very advanced CMOS pro-
cesses, used to fabricate digital circuits, are not imaging friendly (issues with large
leakage current, low light sensitivity, noise performance, etc.).

• CMOS image sensor technology scales almost at the same pace as standard digital
CMOS processes do.

• Pixel dimension scales with the technology node used, and the ratio is about a factor
of 20 [14].

The CMOS imager replaced the CCD by scaling to a lower cost and higher perfor-
mances. The reasons for the continued scaling the CMOS devices are as follows: increase
customers perceived value by increased number of pixels; reduce cost; survive by contin-
ued innovation; crush competitors by rendering their products obsolete; increase imager
spatial resolution.

The present state of the art of CMOS imaging sensor has pixel size of 1.75 μm×1.75
μm for Front-side pixel illumination (FSI) technology and 1.4 μm× 1.4 μm for Back-
side pixel illumination (BSI) technology11. In Fig.(2.21) is shown the difference between
such technologies. Recently Sony has declared the prototyping of a new CMOS sensor
10 million pixels with 0.9 μm pixel pitch [17].

The reduction of pixel pitch has unfortunately increased the problem of crosstalk (see
Chapter 2.2.2). Crosstalk occurs because in digital photography separation of the colors
of light and the actual sensing occur in different points of the sensor and at significant
distances from each other. In CMOS image sensors, incoming photons go through color
filters, then through glass layers supporting the metal interconnect layers, and then into

10This figure has been taken from [14] which is full property owner of its copyrights.
11The OmniBSI technology has been introduced by first by OmniVision [16].
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Figure 2.20 : Evolution of CMOS imaging sensors. The ITRS curve: roadmap for CMOS
scaling effects [15]. The Technology Node curve: size of the technology used to fabricate
CMOS image sensors. The Pixel size curve: Pixel pitch size of the CMOS imaging
devices.

silicon, where they are absorbed, exciting electrons that then travel to photodiode struc-
tures to be stored as signal. Along the way, the photons and electrons have many oppor-
tunities to be diverted and end up at the wrong photodiodes, contributing to the wrong
color signal. As market pressure drives down the pixel size in cell phone cameras, the
optical crosstalk problem becomes more severe because the decrease in pixel pitch sepa-
rates light of different colors on an ever smaller scale. A CMOS image sensor photodiode
typically occupies 20 to 40 percent of the pixel silicon surface area because of the need
to accommodate pixel transistors.

The microlens was introduced originally to improve the sensitivity of a sensor by
directing more light from the pixel periphery toward the photodiode, thus increasing the
”effective fill factor” (i.e., the fraction of light that hits the silicon on or close to the
photodiode and thus has a chance to contribute to the signal). By the same token, a
microlens may reduce the amount of light that hits a photodiode after crossing a filter
associated with its neighbor. One problem with microlenses is that some of the light can
enter gaps between the microlenses and be scattered by the irregular concave surfaces.
This light contributes a lot to color crosstalk and almost nothing to sensitivity.

Other than microlenses, other factors can contribute to crosstalk. For example, crosstalk
can be increased (and sensitivity lowered) because the light passage in the interconnect
glass is curved by diffraction and by scattering around the absorbing-reflecting metal lines
and vias. Traditional pixel design pushes the lines as far as possible outside the photo-
diode into the pixel periphery to minimize their optical influence. However, increasing
some line widths can help reduce crosstalk by creating a shielding effect around the pho-
todiode that lets light from the correct color filter through but blocks light crossing from
a neighboring filter. If this metal shielding design is used, it should balance the crosstalk
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Figure 2.21 : Front-side pixel illumination (FSI) technology versus Back-side pixel illu-
mination (BSI) technology.

decrease with the inevitable sensitivity decrease.
The newest CMOS image sensors have a pixel pitch of 1.75 μm, are designed with

two or three metal interconnect layers (versus three to five layers in the older 3.5 to 6.0
μm pixel sensors), and have an aspect ratio of approximately two. These characteristics
produce an acceptable final image color quality. However, it must be reduced further for
even smaller pixels to become viable. The reduction in pixel size with no image color
quality deterioration is becoming ever more difficult as the light is being pushed into
photodiodes that are smaller and spaced closer than the wavelength itself.

A 1.75 μm pixel in a modern image sensor might get only 30 to 100 electrons of pho-
tosignal for images taken with 100 lux illumination. If the charge transfer is incomplete
and leaves just 30 electrons on the photodiode, a major image lag in the sensor results.
Furthermore, the 30 electrons left are usually noisy and change from pixel to pixel.

Measuring 1.75 μm, FSI pixels are larger than BSI pixels. Consequently, they require
certain camera components, particularly the length of the lens, to be larger. In the race
for less space, every millimeter and micron is precious. The OmniBSI architecture takes
the FSI topology and reverses the arrangement of layers, situating the metal and dielectric
layers under the sensor array (Fig.(2.21)). Instead of passing through the metal layers,
light hits the silicon layer directly without interference. The first advantage of this ap-
proach is that light entering the sensor takes the shortest path to the detector, through the
color filter only. There are no metal layers or transistors to block or reflect light. Since
light strikes the silicon directly, the sensors fill factor significantly improves, which in turn
boosts low-light sensitivity dramatically. As this arrangement optimizes light absorption,

30   Image Processing for Embedded Devices Bruna et al. 

   



it most notably creates a 1.4-μm BSI pixel, which OmniVision claims surpasses all the
performance metrics of 1.4-μm and most 1.75 μm FSI pixels.

The BSI approach has been around for a while. But due to cost issues, its application
has been predominantly in the military and avionics fields. Although backside illumina-
tion concepts have been studied for over 20 years, up until now nobody has been able
to successfully develop the process for commercial, high-volume CMOS sensor manu-
facturing. Tessera has estimated that even allowing for economics of scale (more die
per wafer), mass-produced back-illuminated die will cost twice to four times as much as
front-illuminated die with similar resolution. Yet the payoff is what is estimated as five
times improvement in performance overall.
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Exposure Correction
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Abstract: The problem of the proper exposure settings for image acquisition is of course strictly
related with the dynamic range of the real scene. In many cases some useful insights can be
achieved by implementing ad-hoc metering strategies. Alternatively, it is possible to apply some
tone correction methods that enhance the overall contrast of the most salient regions of the picture.
The limited dynamic range of the imaging sensors doesn’t allow to recover the dynamic of the real
world. In this Chapter we present a brief review of automatic digital exposure correction methods
trying to report the specific peculiarities of each solution. Starting from exposure metering tech-
niques, which are used to establish the correct exposition settings, we describe automatic methods
to extract relevant features and perform corrections.

3.1 Introduction
One of the main problems affecting image quality, leading to unpleasant pictures, comes
from improper exposure to light. Beside the sophisticated features incorporated in to-
day’s cameras (i.e., automatic gain control algorithms), failures are not unlikely to occur.
Digital consumer devices make use of ad-hoc strategies and heuristics to derive expo-
sure setting parameters. Typically such techniques are completely blind with respect to
the specific content of the involved scene. Some techniques are completely automatic,
cases in point being represented by those based on average/automatic exposure metering
or the more complex matrix/intelligent exposure metering. Others, again, accord to the
photographer a certain control over the selection of the exposure, thus allowing space for
personal taste or enabling him to satisfy particular needs. In spite of the great variety of
methods for regulating the exposure and the complexity of some of them, it is not rare
for images to be acquired with a nonoptimal or incorrect exposure. This is particularly
true for handset devices (e.g., mobile phones) where several factors contribute to acquire
bad-exposed pictures: poor optics, absence of flashgun, not to talk about difficult input
scene lighting conditions, and so forth.

There is no exact definition of what a correct exposure should be. It is possible to
abstract a generalization and to define the best exposure that enables one to reproduce
the most important regions (according to contextual or perceptive criteria) with a level
of gray or brightness, more or less in the middle of the possible range. In any case if
the dynamic range of the scene is sensibly ”high” there is no way to acquire the overall
involved details. One of the main issues of this Chapter is devoted to give an effective
overview of the technical details involved in:

• Exposure settings of imaging devices just before acquisition phase (i.e., preproces-
sing phase) [1];

• Content-dependent enhancement strategies applied as post-processing [2];
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• Advanced solution where multi-picture acquisition of the same scene with different
exposure time allows to reproduce the Radiance map of the real world [3].

.
The rest of the Chapter is organized as follows. The initial Section will discuss in

details traditional and advanced approaches related to the pre-processing phase (i.e., the
sensor is read continuously and the output is analyzed in order to determine a set of
parameters strictly related with the quality of the final picture [1]). The role of exposure
setting will be analyzed also considering some case studies where, by making use of
some assumptions about the dynamic range of the real scene, it is possible to derive
effective strategies. Section 3.3 will describe the work presented in [2] where by using
post-processing techniques, an effective enhancement has been obtained just analyzing
some content dependent features of the picture. The presentation follows in part the
structure of our recently published work on the same subject [4].

3.2 Exposure Metering Techniques
Metering techniques built into the camera are getting much better with the introduction of
computer technology but limitations still remain. For example taking a picture on a snow
scene or trying to photograph a black locomotive without overriding the camera calcu-
lated metering is very difficult. The most important aspect of the exposure duration is to
guarantee that the acquired image falls in a good region of the sensors sensitivity range.
In many devices, the selected exposure value is the main processing step for adjusting
the overall image intensity that the user will see. Many of the first digital cameras used a
separate metering system to set exposure duration, rather than using data acquired from
the sensor chip. Integrating exposure-metering function into the main sensor (through-
the-lens, or TTL, metering) may reduce system cost. The imaging community uses a
measure called Exposure Value (EV) to specify the relationship between the f-number1,
F, and exposure duration, T :

EV = log2(
F2

T
) = 2log2(F)− log2(T ) (3.1)

The exposure value (3.1) becomes smaller as the exposure duration increases, and it
becomes larger as the f-number grows. Most auto-exposure algorithms work in this way:

1. Take a picture with a pre-determined exposure value (EVpre);

2. Convert the RGB values to luminance, L;

3. Derive a single value Lpre (like center-weighted mean, median, or more complicated
weighted method as in matrix-metering) from the luminance picture;

1f-numbers, or aperture values, are measurement of the size of the hole that the light passes through the
rear of the lens, relative to the focal length. The smaller the f-number, the more light gets through the lens.
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EV f

1.0 1.4 2.0 2.8 4.0 5.6
−6 60 2 m 4 m 8 m 16 m 32 m
−5 30 60 2 m 4 m 8 m 16 m
−4 15 30 60 2 m 4 m 8 m
−3 8 15 30 60 2 m 4 m
−2 4 8 15 30 60 2 m
−1 2 4 8 15 30 60
0 1 2 4 8 15 30
1 1/2 1 2 4 8 15
2 1/4 1/2 1 2 4 8
3 1/8 1/4 1/2 1 2 43 1/8 1/4 1/2 1 2 4
4 1/15 1/8 1/4 1/2 1 2
5 1/30 1/15 1/8 1/4 1/2 1
6 1/60 1/30 1/15 1/8 1/4 1/2
7 1/125 1/60 1/30 1/15 1/8 1/4
8 1/250 1/125 1/60 1/30 1/15 1/8
9 1/500 1/250 1/125 1/60 1/30 1/15

10 1/1000 1/500 1/250 1/125 1/60 1/30
11 1/2000 1/1000 1/500 1/250 1/125 1/60
12 1/4000 1/2000 1/1000 1/500 1/250 1/125
13 1/8000 1/4000 1/2000 1/1000 1/500 1/250
14 1/8000 1/4000 1/2000 1/1000 1/500
15 1/8000 1/4000 1/2000 1/1000
16 1/8000 1/4000 1/2000

f-number

8.0 11 16 22 32 45 64
64 m 128 m 256 m 512 m 1024 m 2048 m 4096 m
32 m 64 m 128 m 256 m 512 m 1024 m 2048 m
16 m 32 m 64 m 128 m 256 m 512 m 1024 m
8 m 16 m 32 m 64 m 128 m 256 m 512 m
4 m 8 m 16 m 32 m 64 m 128 m 256 m
2 m 4 m 8 m 16 m 32 m 64 m 128 m
60 2 m 4 m 8 m 16 m 32 m 64 m
30 60 2 m 4 m 8 m 16 m 32 m
15 30 60 2 m 4 m 8 m 16 m
8 15 30 60 2 m 4 m 8 m8 15 30 60 2 m 4 m 8 m
4 8 15 30 60 2 m 4 m
2 4 8 15 30 60 2 m
1 2 4 8 15 30 60

1/2 1 2 4 8 15 30
1/4 1/2 1 2 4 8 15
1/8 1/4 1/2 1 2 4 8
1/15 1/8 1/4 1/2 1 2 4
1/30 1/15 1/8 1/4 1/2 1 2
1/60 1/30 1/15 1/8 1/4 1/2 1

1/125 1/60 1/30 1/15 1/8 1/4 1/2
1/250 1/125 1/60 1/30 1/15 1/8 1/4
1/500 1/250 1/125 1/60 1/30 1/15 1/8
1/1000 1/500 1/250 1/125 1/60 1/30 1/15

Figure 3.1 : Example of fixed exposure times.

4. Based on linearity assumption and equation (3.1), the optimum exposure value
EVopt should be the one that permits a correct exposure. The picture taken at this
EVopt should give a number close to a pre-defined ideal value Lopt , thus:

EVopt = EVpre + log2(Lpre)− log2(Lopt) (3.2)

The ideal value Lopt for each algorithm is typically selected empirically. Different algo-
rithms mainly differ in how the single number Lpre is derived from the picture. In Fig.(3.1)
an example Table of EVs, which take into consideration different exposure times and f-
numbers, is reported.

3.2.1 Classical Approaches

The metering system in typical imaging device measures the amount of light in the scene
and calculates the best-fit exposure value based on the metering mode explained below.
Automatic exposure is a standard feature in all digital cameras. After having selected the
metering mode, it is requested just pointing the camera and pressing the shutter release.
The metering method defines which information of the scene is used to calculate the
exposure value and how it is determined. Cameras generally allow the user to select
between spot, center-weighted average, or multi-zone metering modes.
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Spot Metering

Spot metering allows user to meter the subject in the center of the frame (or on some
cameras at the selected AutoFocus (AF) point). Only a small area of the whole frame
(between 1-5% of the viewfinder area) is metered while the rest of the frame is ignored.
In this case Lpre (3.2) is the mean of the center area (see Fig.(3.2(a))). This will typically
be the effective center of the scene, but some cameras allow the user to select a different
off-center spot, or to recompose by moving the camera after metering. A few models
support a Multi-Spot mode which allows multiple spot meter readings to be taken of
a scene that are averaged. Both of those cameras and others also support metering of
highlight and shadow areas. Spot metering is very accurate and is not influenced by other
areas in the frame. It is commonly used to shoot very high contrast scenes. For example
(see Fig.(3.2(d))), if the subject’s back is being hit by the rising sun and the face is a lot
darker than the bright halo around the subject’s back and hairline (the subject is ”backlit”),
spot metering allows the photographer to measure the light bouncing off the subject’s face
and expose properly for that, instead of the much brighter light around the hairline. The
area around the back and hairline will then become over-exposed. Spot metering is a
method upon which the Zone System depends2.

(a) Spot area (b) Partial area (c) Center weighted area

(d) Spot example (e) Partial area example (f) Center weighted example

Figure 3.2 : Metering examples.

2The Zone System is a photographic technique for determining optimal film exposure and development,
formulated by Ansel Adams and Fred Archer in 1941. The Zone System provides photographers with a
systematic method of precisely defining the relationship between the way they visualize the photographic
subject and the final results. Although it originated with black and white sheet film, the Zone System is also
applicable to roll film, both black and white and color, negative and reversal, and to digital photography.
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Partial Area Metering

This mode meters a larger area than spot metering (around 10-15% of the entire frame),
and is generally used when very bright or very dark areas on the edges of the frame
would otherwise influence the metering unduly. Like spot metering, some cameras can
use variable points to take readings from (in general autofocus points), or have a fixed
point in the center of the viewfinder. In Fig.(3.2(e)) an example of partial metering on a
backlight scene is shown; this method permits to equalize much more the global exposure.

Center-weighted Average Metering

This method is probably the most common metering method implemented in nearly every
digital camera: it is also the default for those digital cameras which don’t offer metering
mode selection. In this system, as described in Fig.(3.2(c)), the meter concentrates be-
tween 60 to 80 percent of the sensitivity towards the central part of the viewfinder. The
balance is then ”feathered” out towards the edges. Some cameras allow the user to adjust
the weight/balance of the central portion to the peripheral one. One advantage of this
method is that it is less influenced by small areas that vary greatly in brightness at the
edges of the viewfinder; as many subjects are in the central part of the frame, consistent
results can be obtained. Unfortunately, if a backlight is present into the scene the central
part results darker than the rest of the scene (Fig.(3.2(f))), and unpleasant underexposed
foreground is produced.

Average Metering

In this mode the camera will use the light information coming from the entire scene and
averages for the final exposure setting, giving no weighting to any particular portion of the
metered area. This metering technique has been replaced by Center-Weighted metering,
thus is only obsolete and present in older cameras only.

3.2.2 Advanced Approaches
Matrix or Multi-zone Metering

This mode is also called matrix, evaluative, honeycomb, segment metering, or esp (elec-
tro selective pattern) metering on some cameras. It was first introduced by the Nikon FA,
where it was called Automatic Multi-Pattern metering. On a number of cameras, this is
the default/standard metering setting. The camera measures the light intensity in several
points of the scene, and then combines the results to find the settings for the best exposure.
How they are combined/calculated deviates from device to device. The actual number of
zones used varies wildly, from several to over a thousand. However performance should
not be concluded on the number of zones alone, or the layout. As shown in Fig.(3.3) the
layout can change drastically from a manufacturer to another, also within the same com-
pany the use of different multi-zone metering can change due to several reasons (e.g., the
dimension of the final pixel matrix).
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(a) Canon 21-Zones (b) Canon 16-Zones (c) Canon 35-Zones

(d) Nikon 10-Segments (e) Nikon 7-Segments (f) Nikon 6-Segments

(g) Sigma 9-Zones (h) Samsung 16-Zones (i) Olympus ESP

(j) Konica Minolta 40 zone honey-
combs

(k) Konica Minolta 14 zone honey-
combs

Figure 3.3 : Examples of different kind of Multi-zone Metering mode used by several
cameras manufacturers.
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Many manufacturers are less than open about the exact calculations used to determine
the exposure. A number of factors are taken into consideration, these include: AF point,
distance to subject, areas in-focus or out-of-focus, colors/hues of the scene, and back-
lighting. Multi-zone tends to bias its exposure towards the autofocus point being used
(while taking into account other areas of the frame too), thus ensuring that the point of
interest has been properly exposed (it is also designed to avoid the need to use exposure
compensation in most situations). A database of many thousands of exposures is pre-
stored in the camera, and the processor can use a selective pattern to determine what is
being photographed. Some cameras allow the user to link (or unlink) the autofocus and
metering, giving the possibility to lock exposure once AF confirmation is achieved, AEL
(Auto Exposure Lock). Using manual focus, and on many compacts cameras, the AF
point is not used as part of the exposure calculation, in such instances it is common for
the metering to default to a central point in the viewfinder, using a pattern based off of
that area. Some users have problems with wide angle shots in high contrast, due to the
large area which can vary greatly in brightness, it is important to understand that even in
this situation, the focus point can be critical to the overall exposure.

3.2.3 Exposure Control-System

In many conventional digital cameras, such as Digital Single Lens Reflex (DSLR), the
exposure control systems are implemented using mechanical devices. Such mechanical
devices include a mechanical iris and/or a mechanical shutter wheel. The most common
implementation, the mechanical iris, varies the rate at which the sensor receives photons.
The mechanical shutter varies the amount of time during which the sensor receives pho-
tons.

Since mechanical devices have a relatively low reliability, slow response time, and
increase the size and the cost of lenses, mobile devices have been fitted up with exposure
control systems which take into account integration time and multiplication gain factors
(see Fig.(3.4)).

The exposure control system performs a first lecture of pixels values, directly on Bayer
data coming from the sensor and analyzes the pixel values through a statistic processing
block. The algorithm involved into this statistical analysis can be a simple statistical
(weighted) mean brightness (see Section 3.2.1) or a more sophisticated metering (see
Section 3.2.2).

The viewfinder pipeline is used to estimate the correct exposure. This pipeline is a
simplified version of the image generation pipeline, and is used to show a preview of
captured image on the embedded display. The exposure control system, described in
Fig.(3.4), performs the following steps:

1. Initial integration time consideration: a first image is captured and is given to the
system, which perform the statistical analysis.

2. Calculate ideal gain: to achieve a first correction an ideal multiplication gain is is
used to accordingly set both analog and digital gains.
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3. Determine analog gain: the analog gain is estimated through statistical measures.

4. Finalize integration time: the integration time is then fixed.

5. Determine digital gain: the digital gain is estimated through statistical measures.

6. Determine final exposure: the final exposure is thus estimated and the image capture
is achieved.

SENSOR

PIXEL
ARRAY X X

Integration
Time

Analog
Gain

Digital
Gain

EX
CO

STATISTICS
PROCESSOR

PIXELS

STATISTICS

XPOSURE
ONTROL

Figure 3.4 : Exposure Control-System pipeline.

3.3 Exposure Correction
As explained in Section 3.2, a good exposure should be able to reproduce the most im-
portant regions (according to contextual or perceptive criteria) with a level of gray or
brightness, more or less in the middle of the possible range. After acquisition phase typ-
ical post-processing techniques try to realize an effective enhancement by using global
approaches: histogram specification, histogram equalization and gamma correction to
improve global contrast appearance [5,6] only by stretching the global distribution of the
intensity. More adaptive criterions are needed to overcome such drawback. The expo-
sure correction technique [2] described in this Section is designed essentially for mobile
sensors applications. This new element, present in newest mobile devices, is particu-
larly harmed by “backlight” when the user utilizes a mobile device for video phoning.
The detection of skin characteristics in captured images allows selection and properly en-
hancement and/or tracking of regions of interest (e.g., faces). If no skin is present in the
scene the algorithm switches automatically to other features (such as contrast and focus or
indoor/outdoor) tracking for visually relevant regions. This implementation differs from
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the algorithm described in [7] because the whole processing can also be performed di-
rectly on Bayer pattern images [8], and simpler statistical measures were used to identify
information carrying regions. The algorithm is defined as follows:

1. Luminance extraction. If the algorithm is applied on Bayer data, in place of the
three full color planes, a sub-sampled (quarter size) approximated input data (Fig.(3.8))
is used.

2. Using a suitable features extraction technique the algorithm fixes a value to each
region. This operation permits to seek visually relevant regions (for contrast and
focus, or indoor/outdoor, the regions are block based, for skin recognition the re-
gions are associated to each pixel).

3. Once the ‘visually important’ pixels are identified (e.g., the pixels belonging to skin
features) a global tone correction technique is applied using as main parameter the
mean gray level of the relevant regions.

3.3.1 Feature Extraction

As aforementioned, in the following we will briefly describe three techniques able to
extract useful information to correct the image exposure.

Focus and Contrast

To be able to identify regions of the image that contain more information, the luminance
plane is subdivided in N blocks of equal dimensions. For each block, statistical measures
of “contrast” and “focus” are computed. Contrast refers to the range of tones present in
the image. A high contrast leads to a higher number of perceptual significance regions
inside a block. Focus characterizes the sharpness or edgeness of the block and is useful
in identifying regions where high frequency components (i.e., details) are present.

The contrast measure is computed by simply building a histogram Hx for each block
x of the N blocks and then calculating its deviation (3.3) from the mean value (3.4):

Cx =
∑255

i=0 |i−Mx| ·Hx[i]

∑255
i=0 Hx [i]

(3.3)

where M is the mean value:

Mx =
∑255

i=0 i ·Hx [i]

∑255
i=0 Hx [i]

(3.4)

A high deviation value denotes good contrast and vice versa.
The focus measure is computed by convolving each block with a simple 3x3 Laplacian

filter. In order to discard irrelevant high frequency pixels (mostly noise), the outputs of
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(c) (d)

Figure 3.5 : Features extraction pipeline (for focus and contrast with N = 25). Visual rel-
evance of each luminance block (b) of the input image (a) is based on relevance measures
(c) able to obtain a list of relevant blocks (d).

the convolution at each pixel are thresholded. The mean focus value of each block is
computed as:

Fx = ∑M
i=1 thresh[lapl(i),Noise]

M
(3.5)

where M is the number of pixels and the thresh() operator discards values lower than
a fixed threshold Noise. Once the values Fx and Cx are computed for all blocks, relevant
regions will be classified using a linear combination of both values. Features extraction
pipeline is illustrated in Fig.(3.5).

Therefore it is assumed that well focused or high-contrast blocks are more relevant
compared to the others.

• Contrast refers to the range of tones present in the image. A high contrast leads to
a higher number of perceptual significance regions inside a block.

• Focus characterizes the sharpness or edginess of the block and is useful in identify-
ing regions where high frequency components (i.e., details) are present.

If the aforementioned measures were simply computed on highly underexposed im-
ages, then regions having better exposure would always have higher contrast and edginess
compared to those that are obscured.
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In order to perform a visual analysis revealing the most important features regardless
to lighting conditions, a new “visibility image” is constructed by pushing the mean gray
level of the input green Bayer pattern plane (or the luminance channel for color images)
to 128. The push operation is performed using the same function that is used to adjust the
exposure level and it will be described later. Furthermore to remove irrelevant peaks, the
histogram is slightly smoothed by replacing each entry with its mean in a ray 2 neighbor-
hood. Thus, the original histogram entry is replaced with the gray-level H̃x [i] :

H̃x [i] =
(Hx [i−2]+Hx [i−1]+Hx [i]+Hx [i+1]+Hx [i+2])

5
(3.6)

Once the values Fx and Cx, for each block x of the N blocks, are computed, relevant
regions will be classified using a linear combination of both values.

Skin Recognition

As before a “visibility image” obtained forcing the mean gray level of the luminance
channel to be about 128 is built. Most existing methods for skin color detection usually
threshold some sort of measure of the likelihood of skin colors for each pixel and treat
them independently. Human skin colors form a special category of colors, distinctive from
the colors of the most other natural objects. It has been found that human skin colors are
clustered in various color spaces ( [9], [10]). The skin color variations between people are
mostly due to intensity differences. These variations can therefore be reduced by using
chrominance components only. Yang et al. [11] have demonstrated that the distribution
of human skin colors can be represented by a two-dimensional Gaussian function on the
chrominance plane. The center of this distribution is determined by the mean vector �μ
and its shape is determined by the covariance matrix Σ; both values can be estimated from
an appropriate training data set. The conditional probability p(�x|s) of a block belonging
to the skin color class, given its chrominance vector�x is then represented by:

p(�x|s) =
1

2π
|Σ|− 1

2 exp

{
− [d(�x)]2

2

}
(3.7)

where d(�x) is the so-called Mahalanobis distance from the vector�x to the mean vector
�μ and defined as:

[d(�x)]2 = (�x−�μ)′Σ−1(�x−�μ) (3.8)

The value d(�x) determines the probability that a given block belongs to the skin color
class. The larger the distance d(�x) , the lower the probability that the block belongs to the
skin color class s.

Due to the large quantity of color spaces, distance measures, and two-dimensional
distributions, many skin recognition algorithms can be used. The skin color algorithm
can be applied in different ways (as shown in Fig.(3.6)):

1. By using the input YCbCr image and the conditional probability (3.7), each pixel is
classified as belonging to a skin region or not. Then a new image with normalized
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(a) (b) (c)

Figure 3.6 : Skin recognition examples on RGB images: (a) original images compressed
in JPEG format; (b) simplest threshold method output; and (c) probabilistic threshold
output.

grayscale values is derived, where skin areas are properly highlighted (Fig.(3.6(c))).
The higher the gray value the bigger the probability to compute a reliable identifi-
cation.

2. By processing an input RGB image, a 2D chrominance distribution histogram (r, g)
is computed, where r=R/(R+G+B) and g=G/(R+G+B). Chrominance values rep-
resenting skin are clustered in a specific area of the (r,g) plane, called “skin locus”
(Fig.(3.7(c))), as defined in [12]. Pixels having a chrominance value belonging to
the skin locus will be selected to correct exposure.

3. For Bayer data, the skin recognition algorithm works on the RGB image created by
sub-sampling the original picture, as described in Fig.(3.8).

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
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0.8

0.9

1

g

r

026 Skin

(c)

Figure 3.7 : Skin recognition examples on Bayer pattern image: (a) original image in
Bayer data; (b) recognized skin with probabilistic approach; and (c) threshold skin values
on r−g bidirectional histogram (skinlocus).
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Figure 3.8 : Bayer data sub-sampling generation, where G′ = GR+GB
2 .

Indoor/Outdoor

Another technique reported in [13] uses a two-stage classifier exploiting two features:
colors and textures. Then through a Support Vector Machine (SVM) classifier [14], the
algorithm independently classifies image blocks according to features using wavelets co-
efficients. The classified blocks are then used by the second stage SVM classifier to
determine a final indoor/outdoor decision.

To be able to extract color information the image is by first converted into the LST
color space. This color space is based on Otha Color Space [15] except for the normal-
ization factors:

L = k√
3
(R+G+B)

S = k√
2
(R−B)

T = k√
6
(R−2G+B)

(3.9)

where k = 225/max(R,G,B). Thus L represents the luminance channel, S and T the
chrominances one. This color space is used to de-correlate color channels in the original
RGB image. Using a 16 bin histogram for each channel a 48 dimensions feature vector is
computed for each block [13] and classified independently.

The texture features are extracted, from the L channel, through a two level wavelets
decomposition, using Daubechies’ 4-taps filters [16].

Let c2,c3,c4,c5,c6,c7 and c8 represents the subband coefficients of the two level
wavelets decomposition, as described in Fig.(3.9). The texture features are obtained by
first filtering the low-frequency coefficients c5 using the Laplacian filter and then by tak-

Input
c1Level 1 Leve

c2

c3 c4

el 2

c5 c2
c6

c7 c8

c4 c3

Figure 3.9 : Coefficients of the two-level wavelets decomposition.
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ing into consideration the subband energy:

ex =
1

MN

M

∑
i=1

N

∑
j=1

|cx(i, j)|2, x = 2,3, ...8 (3.10)

where M and N are the image dimensions.
For classifying each block, using calculated features, the SVM is applied with a radial

basis kernel function, as described by Efimov et al. in [17].
By taking into account the information, collected on block basis, a similar approach

as described in 3.3.1 can be achieved. In this case the correction is adaptively performed
considering the number of indoor versus the number of outdoor blocks. In particular:

1. if the number of indoor blocks is larger than the number of outdoor blocks then
the scene has probably been taken into a room and the exposure must be correct in
function of such blocks.

2. if the number of outdoor blocks is larger than the number of indoor blocks then the
scene has probably been taken outside the exposure must be correct in function of
such blocks.

3. finally if the number of blocks of each class is equal or more or less equal then the
exposure must be corrected taking into consideration the global statistics.

3.3.2 Exposure Correction
Once the visually relevant regions are identified, the exposure correction is carried out
using the mean gray value of those regions as reference point. A simulated camera re-
sponse curve is used for this purpose. This function can be expressed by using a simple
parametric closed form representation:

f (q) =
255(

1+ e−(Aq)
)C (3.11)

where q represents the ‘light’ quantity and the final pixel value is obtained by means
of the parameters A, and C used to control the shape of the curve. q is supposed to be ex-
pressed in 2-based logarithmic unit (usually referred as “stops”). These parameters could
be estimated, depending on the specific image acquisition device or chosen experimen-
tally, as better specified below (see Chapter 13 ). The offset from the ideal exposure is
computed using the f curve and the average gray level of visually relevant regions avg,
as:

Δ = f−1(Trg)− f−1(avg) (3.12)

where Trg is the desired target gray level. Trg should be around 128 but its value
could be slightly changed especially when dealing with Bayer Pattern data where some
post processing is often applied.
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(a)

(b) (c) (d) (e)

Figure 3.10 : Exposure Correction results by real-time and post processing: (a) original
Bayer input image; (b) Bayer skin detected in real-time; (c) color interpolated image from
Bayer input; (d) RGB skin detected in post processing; (e) exposure corrected image
obtained from RGB image.

The luminance value Y(x,y) of a pixel (x,y) is modified as follows:

Y ′(x,y) = f ( f−1(Y (x,y))+Δ) (3.13)

Note that all pixels are corrected. Basically all processing steps could be implemented
through a LUT (Lookup Table) transform.

3.3.3 Results

The described technique has been tested using a large database of images acquired at
different resolutions, with different acquisition devices, both in Bayer and RGB format.
In the Bayer case the algorithm was inserted in a real-time framework, using a CMOS-
VGA sensor on “STV6500 - E01” Evaluation Kit equipped with “502 VGA sensor” [18].
Examples of skin detection by using real time processing are reported in Fig.(3.10). In
the RGB case the algorithm could be implemented as post-processing step. Examples
of contrast/focus, indoor/outdoor and skin exposure correction are respectively shown in
Fig.(3.11), Fig.(3.12) and Fig.(3.13). Results show how the features analysis capability
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(a) (b) (c)

Figure 3.11 : Exposure correction results by post processing: (a) original color input
image; (b) contrast and focus visually significant blocks detected; (c) exposure corrected
image obtained from RGB image.

of the proposed algorithm permits contrast enhancement taking into account some strong
peculiarity of the input image. Major details and experiments can be found in [2].

3.4 Conclusion
The problem of the proper exposure settings for image acquisition is of course strictly
related with the dynamic range of the real scene. In many cases some useful insights can
be achieved by implementing ad-hoc metering strategies. Alternatively it is possible to
apply some tone correction methods that enhance the overall contrast of the most salient
regions of the picture. The limited dynamic range of the imaging sensors doesn’t allow
to recover the dynamic of the real world; in that case only by using ”bracketing” and
acquiring several pictures of the same scene with different exposure timing a final good
rendering can be realized (see Chapter 13).

In this work we have presented a brief review of automatic digital exposure correction
methods trying to report the specific peculiarities of each solution. Just for completeness
we report that recently, Raskar et al. [19] have proposed a novel strategy devoted to ”flut-
ter” the camera’s shutter open and closed during the chosen exposure time with a binary
pseudo-random sequence. In this way high-frequency spatial details can be recovered
especially when movements with constant speed are present. In particular a robust decon-
volution process is achieved just considering the so-called coded-exposure that makes the
problem well-posed. We think that the Raskar’s technique could be used also in multi pic-
ture acquisition just to limit the overall number of images needed to reconstruct a reliable
HDR map (see Chapter 13).
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(a) (b) (c)

Figure 3.12 : Exposure correction results by post processing: (a) original color input
image; (b) indoor blocks detected; (c) exposure corrected image obtained from RGB
image.
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(a) (b) (c)

Figure 3.13 : Exposure correction results: in the first row the original images (a) and
(b) acquired by Nokia 6125, 1.3Mpixels CMOS sensor; (c) picture acquired with CMOS
sensor 10 Mpixels, Canon 400D camera; in the second row the corrected output.
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Pre-acquisition: Auto-focus

A. Capra, S. Curti
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

Abstract: In this Chapter different auto focusing techniques are analyzed. First Auto-focus
(AF) techniques were implemented into Single Lens Reflex (SLR) cameras. They use a dedicated
system to focus a scene which is independent from the acquisition part mainly based on a phase
detection system. Digital still cameras (DSC) instead use the acquisition sensor also to focus the
scene. An image processing system based on contrast analysis finds the in-focus position and
is employed in DSC due to its compactness and cheapness. Both the SLR and the DSC optics
need a moving lens to focus the scene. Very low cost and ultra small cameras, such as those
integrated into mid-low cost Personal Digital Assistant (PDA) (i.e., smart-phones), don’t have any
moving part. In this case to accomplish a further extension of the Depth of Field (DoF) these
modules implement a digital auto-focus technique known as Extended Depth of Field (EDoF).
Nowadays most of the camera systems implement sophisticated content dependent AF models:
they are capable to optimize their behavior for still and video acquisition, to detect and prioritize
focus on faces and to predict new lens position when moving object are being focused.

4.1 Principles of Auto-focusing
Before analyzing different methods used to get an in-focus image it is important to give
an overview on fundamentals of optics (more details can be found in [1]) and the corre-
spondence between the amount of blur and the lens position. In the following Subsections
the main components of a focusing system are introduced as well as their contribute to the
final picture. Starting from the optical components a few useful methods to estimate level
of focus and a high level description of a control system used to get an in-focus picture
are described.

4.1.1 Lens System
Actually, a lens system is compound of many single lenses properly stacked together (for
example, low cost mobile cameras use four lenses). Nevertheless in the following it is
useful to refer to an acquisition system as compound of very basic and schematic ele-
ments: a single tiny lens, an object represented by a single point far away from the lens
(the following relationships and equations are not valid for macro photography) and a sen-
sor surface (represented by a segment) where the image from the real world is projected.
Fig.(4.1(a)) is a schematic representation of this basic system.

Table 4.1 summarizes all the symbols used in the remaining of this Section.

Fundamentals on Optics Rules

An illuminated object reflects the incident light and radiates in almost all directions. The
part of light of interest for the camera is only the one which produces to the sensor an
image of the object. If we draw two lines from the object to the outer edges of the lens

S. Battiato, A.R. Bruna, G. Messina and G. Puglisi (Eds)
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Figure 4.1 : Basic imaging system: (a) focusing a point away from the lens; (b) focusing
a point positioned at infinity distance.

Table 4.1 : Symbols used to represent optical fundamentals hereby reported.
f = focal length
di = lens-to-object distance
ds = lens-to-sensor distance (back focal length)
M = image magnification (the size of the image expressed as a fraction of the actual

size of the real object)
c = diameter of the circle of confusion
C = max allowable diameter of the circle of confusion
R = Radius of the circle of confusion
Ap= diameter of the lens
e = focus error distance
NA= f-number, diameter of the diaphragm
p = dimension of the side of a square pixel, or pixel pitch
E = max allowable focus error distance
D1= Inner limit of the Depth of Field
D2= Outer limit of the Depth of Field
H = Hyperfocal Distance

and from there to the sensor, we obtain the basic lines of light (two cones actually) which
affect the imaging process. This schema correctly represents a system which projects a
point in the real world to a point in the sensor and thus a correctly in-focus point. One
cone has its apex at the object and its base on the front of the lens, the other cone has its
apex at the sharply focused image on the sensor and its base on the back of the lens.

There is a mathematical relationship between the lens-to-sensor distance and the focal
length of the lens when the image is perfectly sharp, which can be obtained applying some
geometric rules:

1
f

=
1
ds

+
1
di

(4.1)

The focal length f of a lens is simply defined as the lens-to-sensor distance which

Pre-acquisition: Auto-focus Image Processing for Embedded Devices   55 

   



gives a perfect in-focus image when the object is at infinity, Fig.(4.1(b)). From (4.1),
with some derivation, the following equations can be obtained:

di =
ds f

ds − f
(4.2)

ds =
di f

di − f
(4.3)

f =
dsdi

di +ds
(4.4)

An object projected on the sensor is represented by a figure with a size which is a
fraction of its real size. It is known as image magnification and its equation is:

M =
ds

di
(4.5)

Fundamentals on Circle of Confusion

Until now it has been supposed that a point in the real world is correctly projected on the
sensor and thus the image is in-focus. As Fig.(4.2) shows, if the object is a single point
source of light and the sensor is away from where this point is normally projected (at a
distance e from the correct ds), the image of that point on the sensor becomes a small disk
of light, not a single point. In this case the image of the point is blurred and the system
is out-of-focus. This small disk of light is called circle-of-confusion of diameter c. The
greater is c the more the system is out of focus. The distance e is known as focus error
and measures the distance of the sensor from the position where the image of the object
is actually projected and thus the actual in-focus position. In an ideal system when e = 0
the system is in-focus and c = 0.

Applying geometric equations about similar triangles, the diameter of circle of confu-
sion c is proportional to the diameter of the lens Ap and to the focus error e:

c =
e
ds

Ap (4.6)

In literature there are other relationships to estimate the circle of confusion. In [2]
being R the radius of the circle of confusion, a scaling factor q is defined as:

q =
c

Ap
= 2

R
Ap

and R =
c
2

(4.7)

From similar triangles equations it is possible to obtain:

q =
ds −d′

s
ds

= d′
s(

1
d′

s
− 1

ds
) (4.8)
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Figure 4.2 : Out-of-Focus projection of a point on the sensor surface: (a) global view of
the system; (b) detail between the lens and the sensor of an Out-of-Focus.

where:
d′

s = ds − e (4.9)

Combining (4.1) into (4.8):

q = d′
s(

1
d′

s
− 1

f
+

1
di

) (4.10)

Therefore, using (4.7) and (4.10) R can be expresses as follows:

R =
Ap

2
d′

s(
1
d′

s
− 1

f
+

1
di

) (4.11)

Note that q and R can be either positive or negative, depending on whether ds > d′
s or

ds < d′
s and represent the degree of de-focus of a lens system.

The circle of confusion is important to understand if, for a given scene and lens po-
sition, the image is in-focus or not. Fundamentally in digital photography a point source
is in-focus if its projection on the sensor is still a point and thus if it falls inside a pixel.
This means that until the circle of confusion diameter is included inside a pixel the image
is sharp. Supposing to have a square pixel of side p it is possible to express the maximum
allowed circle of confusion for a sharp image just considering the following inequality:

c ≤ p
√

2 (4.12)

where p
√

2 represents the diagonal of the pixel.

As described in Section 2.2 not all the surface of a pixel is dedicated to the photode-
tector but only a part. In this case it is better to refer to the distance between the centre of
two pixels instead of the side of a single pixel. For this reason p may also represent the
pixel pitch.

From the (4.12) it is clear the smaller is the pixel size the more accurate (and with
less tolerance) has to be a lens system to keep in focus an image. For example for a sharp
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image a sensor with a pixel size of 1.8μ requires a circle of confusion smaller than 2.55μ .
The same system with a pixel size of 2.2μ has the same sharpness level when a circle of
confusion is 3.11μ , which is 22% greater.

Fundamentals on Diaphragm

A diaphragm is a device with a circular opening in the center put on top of the lens, thus
limiting the entering light passing through the lens itself. Usually, the diameter of this
opening is variable and its effect is equal to change the lens diameter from its max to
a lower value. The diameter of this circular opening is usually known as f-number and
represents the effective diameter of the lens (i.e., the useful diameter of the lens). It is
represented by numbers (like 1.4, 2, 2.8, ..., 22) which represent the diameter as a fraction
of the lens focal length. For example a f-number = 8 means the diameter of the circular
hole is 1/8 of the focal length of the lens. There are different notations in literature, for
example in [1] a f-number = 8 is denoted as f /8.

Diaphragm is mainly used to reduce the amount of light entering through the lens
thus controlling the brightness of the image but it has effect on image sharpness. Hence
by using the diaphragm the effective diameter of the lens can be expressed as:

Ap =
f

NA
where NA = f-number (4.13)

It is clear that NA variations have effect on (4.6) and as consequence on the focusing
performance of the lens, as described in the next two paragraphs.

Fundamentals on Depth of Field

Assumption summarized by (4.12) states that an object positioned at a distance di from
the lens is focused in accordance with the (4.1) until the lens to sensor distance d′

s is
comprised in the range represented by the following disequality:

(ds + e) ≤ d′
s ≤ (ds − e) (4.14)

The zone which goes from (ds + e) to (ds − e) is known as depth of focus (dof). In
addition, there is a range of space in which the objects are in-focus if their distance d′

i
from the lens, in accordance with (4.1) has a respective ds distance with satisfies (4.14).
In other words, when the system is perfectly focusing an object at distance di, if D1
represent the lens to object distance when the sensor to lens distance is (ds − e) and D2
the respective for (ds + e) all the objects in the range [D1,D2] are in-focus. This range is
known as Depth of Field (DoF).

Combining (4.13) into (4.6) under the assumption that ds is close to f it is obtained:

c ≈ e
f

f
NA

=
e

NA
(4.15)

Denoting with C the maximum allowable diameter of the circle of confusion, the
maximum allowable distance from the exact point of focus ds can be expressed by

E = NAC (4.16)
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Here again the equation states that the lens aperture can be used to control the maxi-
mum allowable focus error and, as consequence, the Depth of Field.

di

Lens

Object
in focus

AP

Near limit of
Depth of Field

Far limit of
Depth of Field

D1

D2

Figure 4.3 : Depth of Field.

By referring to Fig.(4.3) and by using simple geometrical algebra (4.1) can be used to
calculate D1 and D2 as follows:

D1 =
di f 2 +E f di −E f 2

f 2 −E f +Edi
(4.17)

and

D2 =
di f 2 −E f di +E f 2

f 2 +E f −Edi
(4.18)

Fundamentals on Hyperfocal Distance

When the system focuses an object at infinity (4.18) becomes:

lim
di→∞

D1 = f +
f 2

E
= H (4.19)

The Hyperfocal distance represents the inner limit of the Depth of Field when the
system focuses an object at infinity. By replacing (4.19) into (4.17) and (4.18):

D1 =
diH − f 2

H +di −2 f
≈ diH

H +di
(4.20)

and

D2 =
diH −2 f di + f 2

H −di
≈ diH

H −di
(4.21)

These approximations are valid until di is many times greater than the focal length
and thus are not valid in macro photography.

Pre-acquisition: Auto-focus Image Processing for Embedded Devices   59 

   



Special importance has the hyperfocal distance. Equations (4.20) and (4.21) state that
if the lens is set to focus an object at distance H then D2 tends to infinity and (D1 = H/2).
In this case all the objects distant from D1 to infinity are in focus and this is the maximum
Depth of Field a lens system can achieve. Equivalently if di is at infinity then (D1 = H)
and (D2 = −H) which means D2 is far away beyond the infinity. It is easy to conclude
that (D2 ≤ 0) every time (di ≥ H).

Fundamentals on Point Spread Function

Once the circle-of-confusion and its relationship with optical model has been defined let
put into equations its effect on a sharp image.
Since the lens aperture is circular, the blurred image of a single point is also a circle with
uniform brightness inside the circle and zero outside. This is usually called blur circle.
If the light energy incident on the lens from a single point during one exposure period
of camera is one unit then the blurred image of this single point is the response of the
camera to a unit point source or in mathematics the point spread function (PSF) of the
camera system. Assuming the system to be a lossless system (i.e., no light energy is
absorbed) and denoting the PSF by h(x,y), subsists the following equation:∫ ∞

−∞

∫ ∞

−∞
h(x,y)dxdy = 1 (4.22)

As sees the blur circle of a single point (4.7 and subsequent) has uniform brightness
inside the circle of radius R and zero outside. Thus:

h(x,y) =

{
1/πR2 if x2 + y2 ≤ R2

0 otherwise
(4.23)

In a real system [2] diffraction, polychromatic illumination, lens aberrations, etc.
make the brightness inside the circle not constant but falling off gradually. For this reason
the (4.23) is usually represented (Fig.(4.4(a))) by a two dimensional Gaussian filter:

h(x,y) =
1√

2πσ
· exp(−x2 + y2

2σ2 ) (4.24)

where σ represents the standard deviation of the distribution of a PSF and in practice
proportional to R by the relationship:

σ = k ·R (4.25)

with k a constant approximately equal to:

k =
1√
2

(4.26)

Known the PSF it is possible to compute the blurred image from a sharp image. Being
f (x,y) the sharp image, the blur image g(x,y) is obtained by the convolution of the sharp
image with the PSF:

g(x,y) =
∫ ∞

−∞

∫ ∞

−∞
f (u,v)h(x−u,y− v)dudv (4.27)
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(a) (b) (c)

Figure 4.4 : Point Spread Function applied to a point image: (a) two dimensional Gaus-
sian Point Spread Function; (b) single point input image; (c) blurred image after the
convolution of the single point with the PSF.

In Fig.(4.4) is represented the convolution result. It is easy to verify that a PSF, as
described here, corresponds to a low pass filter. As a conclusion a blur image is the
resulting of applying a low pass filter to a sharp image.

4.1.2 Actuator Models

At this point of the discussion it is clear that to get an in-focus image the lens system
must satisfy the above mentioned rules. In some cases a system with a small focal length
and high f-number (or, equivalently, small lens diameter) has an adequate DoF to focus
all the object in the scene without the need to move the lens. This often happens in low
cost mobile cameras where the low resolution (up to 1-2M pixels) and the small sensor
size support this solution.

When the DoF is not wide enough it is required a moving lens that, in accordance
with (4.1), properly focuses the main object in the scene. Of course, other objects may
be focused if they fall inside the DoF region, as described by (4.20) and (4.21). To move
the lens to the appropriate position a motor is required. In the past years many different
types of actuator have been developed (some of which are illustrated in Fig.(4.5)) and a
few of them have been implemented in commercial products. In the following Sections
some of the most used or promising micro-actuators and solutions for mobile sensors are
described. Table 4.2 summarizes the main differences.

Stepper Motor

Stepper motors have been widely used in AF systems for DSC and SLR cameras. There
are different implementations which aim to improve speed and reduce noise during the
movement.

The advantage of this motor (basic schema illustrated in Fig.(4.6)) is that it is well
known and at any time it is possible to exactly know the position of the lens. Also, the
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Electromagnetic
Stepper Motors

Simple Solenoids
Voice Coil Solenoids

Piezoelectric
Stacked Piezo Devices

Bimorphs
Disk Translators
Moonie Motors

Helimorphs
Oscillating Bimorphs

Inch Worms
Ultrasonic disk motors

Electrostatic

Electrostrictive

Magnetostrictive

Shape memory alloys

MEMS

Figure 4.5 : List of different types of actuators and graphical representation. Many
technologies have been investigated as well as different shapes and dimensions.

Table 4.2 : Comparison between different types of actuators.

Stepper Motor Voice Coil Piezo Electric Liquid Lens

Thin and long, large
volume. Many com-
ponents. Complex to
produce

Multiple windings
needed around the
lens barrel

Wide and flat, com-
pact volume. Few
components, only
three

Need to avoid water
freezes

Low torque at high
rotational speeds Not feasible High torque at low

rotational speeds Not feasible

Gearing often neces-
sary No gearing necessary No gearing necessary No gearing necessary

Electromagnetic in-
terference

Electromagnetic in-
terference

No magnets. No
electromagnetic
interference

Temperature may af-
fects performances

Multiple phase cur-
rent switching neces-
sary to command the
motor

Separate driver re-
quired

Simplest motor con-
trol system by means
of two drive signals

Simple motor control
system

No static holding
power drain

Static power to hold
position

No static holding
power drain

Static power to hold
position but very low
current required
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new position is accurately and quickly reached by the motor without drift or hysteresis
problems.
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Figure 4.6 : Stepper motor electro-mechanical schematics: (a) Basic schema of a stepper
motor. A shaft is driven by a discrete rotation; (b) Torque force of the stepper.

In mobile imaging phones this technology was the first to be implemented but has
been replaced by new solutions mainly due to miniaturization problems (thickness is
imperative in these devices) and the audible residual noise which is considered not ac-
ceptable by the user. Noise generated by an AF lens is usually accepted if generated
by devices specifically dedicated to photography (SLR, DSC, camcorders) but not from
devices where imaging functionalities are considered extension to a main feature; and
mobile phones are good representative of this category.

Voice Coil

Voice coil actuators are the standard actuators used in speakers for Hi-Fi. As illustrated
in Fig.(4.7) they are composed of a magnet which is moved inside a sheath by applying a
voltage to the coil. By varying polarity of the voltage and current amplitude it is possible
to control the position of the cylindrical magnet inside the sheath. Although this kind
of actuator is a well know technology and it is easy to control the position, it has the
drawback of requiring a current to hold the lens also in static position. This causes a
high power consumption and for this reason it is rarely used in battery powered devices
as mobile phones. In the last years some manufactures have developed an advanced voice
coil actuator which maintains the static position by using a stating holding magnet.

Piezo-Electric

This actuator is based on the principle that piezoelectric materials have the ability to
generate a mechanical movement (or change in their shape) if subjected to an electrical
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Magnet

Winding / sheath

Figure 4.7 : Basic principle of a voice coil system.

field. Recently new devices based on piezoelectric materials in 2 or more layers have been
presented as promising for micro-actuators solutions [3, 4]. By putting a voltage on the
layers the different expansion of the layers can cause a bend. 1Limited [5] uses a patented
shape, the helimorph, to magnify the deflection to make it larger than a simple bender. In
Fig.(4.8) are represented different methods to curve this material to generate piezo-based
micro-actuators. One of the problems of which may suffer this actuators is the hysteresis.
It may happen that the bend obtained when removing an incremental voltage is not the
same that the material had before applying this voltage. This can be a problem because
if the driver moves the actuator from a starting position to a new position and then goes
back it may happen that the final position is not the starting position. To override this
problem it is required a position sensor which communicates the correct position to the
driver (Fig.(4.9)).

Another problem which affected this technology is the speed. Depending on the se-
lected shape the maximum speed sometimes is not fast enough.

�

�

�

�

��

��

��

��

��

Figure 4.8 : Example of bend of the helimorph piezoelectric materials used to generate
micro-actuators.
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Figure 4.9 : Example of position sensor. A photodiode emits infra-red light which is
reflected off a reflecting surface and received by a photo transistor whose output current
depends on the amount of light received. Amount of reflected light depends on the dis-
tance d.

Liquid

This kind of actuator has been developed in recent years [6–8], specifically designed to
target small camera systems like mobile phones, is already in commercial products. It
uses the principle of electro-wetting phenomenon: a drop of two non miscible liquids (an
insulator and a conductor) is deposited on a substrate made of metal, covered by a thin
insulating layer. The lens curvature is controlled by applying a voltage to the substrate.
The focal length changes by varying the applied voltage. In Fig.(4.10)1 is represented
an example of this micro-actuator. In the past this technology suffered from problem
of freezing at low temperatures. This was caused by the water when temperature goes
below 0◦ C. This problem has been now solved but there may still be residual problems
of converging speed and hysteresis.

4.1.3 The Entire Auto-Focus Environment
To complete this overview on the aspects affecting an auto-focus system it is important to
define how are used the concepts defined in Subsections 4.1.1 and 4.1.2.

Referring to Fig.(4.11) a basic scheme on an auto-focus system is reported. A control
system receives information from the lens about current scene. To get an in-focus image,
in accordance to (4.1) and with the tolerances resumed by (4.20) and (4.21), this control
system selects the correct lens position which is communicated to the actuator which
moves the lens to its new position.

All this basic explanation is a simplification of real systems. Usually a sharp in-focus
image is achieved after a subsequent approximation loop as better explained in the next

1Source: http://www.varioptic.com/en/tech/technology-autofocus-optical-image-stabilization.php
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Figure 4.10 : Liquid lens basic scheme and working principles as claimed by Varioptic.

Section.

Lens Actuator

Control
Unit

Figure 4.11 : Basic scheme of an Auto-Focus system. Lens is driven by an actuator. An
optional position sensor is used to read current lens position and send information to the
actuator. A control system analyzing current information moves the lens to the correct
position to focus the current scene.

4.2 Auto-focus System
This Section explains in detail the block Control Unit of Fig.(4.11). In particular it will
be explained how this block understands if a scene under acquisition is in-focus and oth-
erwise how opportunely drives the actuator to get an in-focus image.

66   Image Processing for Embedded Devices Capra and Curti 

   



4.2.1 Optical Auto-focus
Optical auto-focus is mainly used in SLR cameras where size is not relevant while speed
and accuracy are considered top features. In these devices there is a dedicated processor
which, through a sophisticated algorithm, detects changes by implementing scene under-
standing.

Image content and validity of the (4.1) are verified by a dedicated and separated sensor
incorporated into the lens system. The principle used to detect amount of de-focus is
based on the phase detection system [9–12]. Image of the scene passing through the
optical system is sent to a separator lens which generates two images. These images
are processed by a line sensor. This sensor measures phase differences of similar light
intensity peaks and valleys. If these peaks are wider than usual, the system is in rear
focus (which means that the focal point is behind the focal plane). If these peaks are
narrower than usual, the system is in front focus (the focal point is in front of the focal
plane). An illustration of these different working conditions is reported in Fig.(4.12)2.
This information can be immediately used to understand the direction towards move the
lens. Also, the amount of distance of the peaks can be used to estimate the amount of
movement the lens should have. In addition in [13, 14] is claimed a method to speed
up the convergence time by acquiring focus statistics whilst the lens is moving. Many
manufacturers [12, 15] have invented methods capable to track movements of the object
and understand if it is moving closer or farther from the lens thus anticipating the new
if-focus lens position.

SLR cameras auto-focus has reached very high performances nowadays. It is able
to check sharpness in different regions of the image, combine this information with the
DoF characteristic of the lens system, prioritize foreground subjects, track movements
and compensate for motion blur. A few of these features are being implemented also in
compact cameras and are described in Section 4.3.
All these features and benefits have a drawback: they require dedicated sensor, for the
phase detection, and processor, to implement all the logic. All this requires additional
space and cost which is easily justifiable in SLR market segment.

4.2.2 Digital Auto-focus
In embedded devices (like DSC and phone cameras) it is not possible to use the fast
and accurate auto-focus system based on the principle of the phase detection (Section
4.2.1). Neither there is enough space to host the required components nor the extra cost
can be justified. For this reason these devices implement a different auto-focus system
based on the direct processing of data from the image sensor. This kind of auto-focus is
known as digital auto-focus and its high level representation is shown in Fig.(4.13). In
this configuration the control unit receives information about the focus conditions from a
focus measure block which, by analyzing in a proper way the image extracted from the
sensor, computes a focus measure. This measure is used to determine if the system is
in-focus or not and if it is the case to drive the lens to the new correct position.

2Source: http://www.nikon.com/about/technology/core/software/caf/index.htm
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Figure 4.12 : Phase detection based auto-focus system as described by Nikon [12]: (a)
Lens in the correct position: system in focus; (b) Focal point behind the focal plane:
rear focus; (c) Focal point in front of the focal plane: front focus; (d) Nikon patented
overlap servo: focus estimation is performed whilst the lens is moving, thus accelerating
the convergence time.
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Figure 4.13 : Digital AF general scheme: a focus measure is extracted from the image
sensor and sent to the control unit which selects the new lens position to be driven to by
the actuator.

Statistics Acquisition

The first step of this process is to define a statistic measure able to represent when the
acquired image of a given scene under acquisition is in-focus. In particular this statistic
is usually designed to have a value which is maximum for the sharp in-focus image and
gradually decreases as the image blur increases. This kind of statistic is usually related
to the amount of high frequency contained in the input Bayer Pattern image. In fact
it is straightforward from the concepts defined in the previous Sections of this Chapter
(Section 4.1.1 on page 57 and subsequent and formally defined by equations in Section
4.4.1) that the more the image is out of focus the more the high frequencies, corresponding
to sharp edges, are lost. Several focus measures have been proposed and compared in
literature in the past years [2,16,17]. The more representative hereby described are based
on the following assumptions:

• A grayscale image of N ×M spatial dimension.

• f (x,y) is the focused image of a planar object in accordance with (4.1), where (x,y)
corresponds to a point (x,y) of the scene.

• gi(x,y) is a sequence of images of an object acquired by changing camera param-
eters (focal length, f-number, focusing position); in detail g(x,y) corresponds to
(4.27) and it has been obtained by changing only the focusing position.

Variance
Energy of a discrete image can be computed as:

Ei =
1

MN ∑
x

∑
y

g2
i (x,y) (4.28)
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The energy variance is a linear and monotonic function computed as:

Variancei =
1

MN ∑
x

∑
y

[g2
i (x,y)−μi]2 (4.29)

where:
μi =

1
MN ∑

x
∑
y

g2
i (x,y) (4.30)

Energy of Image Gradient
This focus measure is represented by a first order derivative of a bi-dimensional digital

image and it is expressed as:
∑
x

∑
y

[	(gi(x,y))]2 (4.31)

and the gradient operator 	 applied to a function gi at coordinates (x,y) is defined as a
vector:

	gi =
[

Gx
Gy

]
=

⎡
⎢⎢⎢⎣

δgi

δx

δgi

δy

⎤
⎥⎥⎥⎦ (4.32)

Its magnitude is given by:

	gi = mag(	gi) = [G2
x +G2

y ]
1/2 =

[(
δgi

δx

)2

+
(

δgi

δy

)2
]1/2

(4.33)

Due to the high computational cost of this operation it is common to approximate the
magnitude of the gradient by using absolute values:

	gi ≈ |Gx|+ |Gy| (4.34)

or by avoiding the square root operation:

	gi ≈ G2
x +G2

y (4.35)

Combining (4.31) and (4.33) and using one of the above simplifications the measure
can be expressed as:

Sobeli = ∑
x

∑
y

[Gx(x,y)2 +Gy(x,y)2] (4.36)
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Gx and Gy can be calculated by applying a spatial mask [17] centered in gi(x,y). The
smallest and more used mask is a 3×3 mask and it is known as Sobel operator:

Gx =

⎡
⎣ −1 −2 −1

0 0 0
1 2 1

⎤
⎦ Gy =

⎡
⎣ −1 0 1

−2 0 2
−1 0 1

⎤
⎦ (4.37)

Exploiting (4.34) with the use of the masks (4.37) it is obtained:

	gi ≈|(gi(x−1,y+1)+2gi(x,y+1)+gi(x,y+1))
− (gi(x−1,y−1)+2gi(x,y−1)+gi(x,y−1))|
+ |(gi(x+1,y−1)+2gi(x+1,y)+gi(x,y+1))
− (gi(x−1,y−1)+2gi(x−1,y−1)+gi(x+1,y−1))|

(4.38)

Energy of Image Laplacian
It represents a second order derivative of an image by the equation:

Laplacei = ∑
x

∑
y

[	2(gi(x,y))]2 (4.39)

which is known as Laplace operator. From (4.33) it results that:

	2gi =
δ 2gi

δx2 +
δ 2gi

δy2 (4.40)

To be applied to a digital image this equation needs to be expressed in discrete form.
Considering that a first order derivative of a one-dimensional function in the discrete
domain can be expressed as:

δgi

δx
= gi(x+1)−gi(x) (4.41)

and its second order derivative as:

δ 2gi

δx2 = gi(x+1)+gi(x−1)−2gi(x) (4.42)

For a bi-dimensional function it becomes:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ 2gi

δx2 = gi(x+1,y)+gi(x−1,y)−2gi(x,y)

δ 2gi

δy2 = gi(x,y+1)+gi(x,y−1)−2gi(x,y)

(4.43)
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As for (4.37) the operator (4.40) can be obtained by a 3× 3 spatial mask operation
performed pixel by pixel:

	2gi =

⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ (4.44)

or alternatively by:

	2gi =

⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦ (4.45)

Frequency Selective Weighted Median Filter
If we have an image gi(x,y) where p(x,y) is its pixel of coordinates (x,y), the frequency

selective median filter (FSWM) [16] can be calculated by considering the following spa-
tial mask:

FSWMMask =

⎡
⎢⎢⎢⎢⎣

0 0 p(x,y−2) 0 0
0 0 p(x,y−1) 0 0

p(x−2,y) p(x−1,y) p(x,y) p(x+1,y) p(x+2,y)
0 0 p(x,y+1) 0 0
0 0 p(x,y+2) 0 0

⎤
⎥⎥⎥⎥⎦
(4.46)

From this mask it is possible to compute the following median operations valid for a
vertical frequency analysis:

M1(x,y) = medv1 −medv2 (4.47)

where:

medv1 = median { p(x,y−2), p(x,y−1), p(x,y)}
medv2 = median { p(x,y), p(x,y+1), p(x,y+2)} (4.48)

Equivalently the same can be computed for horizontal frequency analysis:

M2(i, j) = medh1 −medh2 (4.49)
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where:

medh1 = median { p(x−2,y), p(x−1,y), p(x,y)}
medh2 = median { p(x,y), p(x+1,y), p(x+2,y)} (4.50)

Final FSWM computation on the whole image is performed by the equation:

FSWM = ∑
x

∑
y

[M1(x,y)2 +M2(x,y)2] (4.51)

Being this statistic dominated by median operators it is almost immune to noise in the
very high frequencies. In fact this specially designed median mask is able to adapt its
filter response to the real content of the image.

Other Focus Measures
Among the different focus measures which have been proposed in literature [2,16] one

of the most used in the past was Tenengrad [18,19]. It is a gradient based measure similar
to (4.36) but it is threshold based (only gradient magnitude values greater than a given
threshold are accumulated). The thresholding operation introduces a few limitations to
this measure. The most relevant is that the final in-focus position depends on the value of
the threshold and as consequence by changing its value the global maximum might not
occur for the best focused image. For this reason nowadays this statistic is no more used.

Nayar [20] has proposed a focus measure based on a new operator called sum-modified
Laplacian (SML). It is defined as:

SML = 	2
Mgi(x,y) = |δ

2gi

δx2 |+ |δ
2gi

δy2 | (4.52)

By summing (4.52) to the entire image it is obtained the SML-based focus measure
(SMLF) defined as:

SMLF = ∑
x

∑
y

(|δ
2gi

δx2 |+ |δ
2gi

δy2 |) (4.53)

where the second order derivatives in discrete domains are expressed in (4.43).
Compared with Laplace (4.39) SMLF operator (4.53) sums absolute instead of square

values. Usually sum of square values tends to accentuate peak values thus this statistic
could suffer lack of precision for not enough sharp peak. As the Laplacian this statistic
has the disadvantage that second order derivatives accentuate noise effects. This may
causes that in certain conditions noise tends to dominate real information by producing
the biggest peak which is misinterpreted as actual in-focus position.
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Analysis of Sidelobe Effect

All the statistics discussed in the previous Subsections may be affected by sidelobes in
the frequency domain. If the energy content in these frequencies is high it can create local
maxima which affect the detection of the actual in-focus position. To reduce influence
of sidelobes in the monotonicity of these functions it should be suggested to apply a low
pass filter to the image.
Anyway this filter might be considered an unjustifiable additional computational cost and
thus usually not implementable. Thus by simply acquiring statistics after a low pass filter
there is the double advantage of reducing sidelobes and noise influence in the high fre-
quencies.
If the system has not been correctly designed, frequencies above the sensor Nyquist fre-
quency can introduce aliasing effects which may contribute to a defective in-focus esti-
mation. Noise reduction filter can help to limit this effect as well. As a result detection of
the in-focus position is more accurate when statistics are acquired after a noise reduction
filter.

Comparing the Focus Measures

To achieve an effective in-focus search, employed statistics should generate focus curves
which present:

• Monotonicity: it is mandatory that the peak corresponds to the in-focus position
and that the curve has only a peak; the search algorithm must be able to understand
if the image is blurred or not and eventually decide the direction towards move the
lens to reach the in-focus position.

• Magnitude of slope: also far from the peak the curve must present a slope so that
the searching algorithm can opportunely move the lens; local peak (sidelobe effects)
and flatness in highly blurred regions can affect the final result.

• Smoothness: the search algorithm must move among the whole curve understand-
ing, step by step, current focus measure and direction to reach the in-focus position;
local peaks and not smooth curves tend to falsify the search.

The study reported in [2] highlights that (4.29) is smooth but lacks of slopeness in
highly blurred and almost focused portion of the curve.
The focus measures (4.36) and (4.39) are high pass filtering based. This accentuates the
sidelobes effects and residual noise influence in the monotonicity and smoothness of the
curve.
FSWM (4.51) is a band pass filter operator. It is generally smooth and monotonic, having
moderated slopes both in blurred and focused part of the curve and almost sharp peak at
the in-focus position. For this reason it is usually referred as a valid focus measure in
digital auto focus techniques. An example of effective curve is reported in Fig.(4.14(c)).
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4.2.3 Control Unit

Referring to Fig.(4.13) the control unit has the task to analyze focus measures and move
the lens through the actuator to the correct in-focus position. Although both optical and
digital auto-focus systems have a control unit in the following of this Subsection it is
referred to a digital auto-focus system (Subsection 4.2.2).
For a given static scene the best and more accurate method to find this position is to
perform a full search. It consists in evaluating the focus measure for any lens position
and, at the end of this range spanning, selecting the highest position. In Fig.(4.14(c)) is
reported and example of this search.

Although this method is actually accurate to find the sharpest position it is time ex-
pensive and visually annoying: the former because it is required a spanning of all the
lens position; the latter because this spanning displays to the user images which go from
blurred to sharp to blurred again before selecting the definitive in-focus position.
To optimize the search many embedded devices use the hill climbing search (HCS). It is
based on a method which identifies the slope of the curve and its direction and follows this
slope until the top is reached (hill climbing). This top of the hill represents the in-focus
position.

By referring to Fig.(4.14(d)) a basic HCS algorithm is compound of three different
phases:

• Start (step 1): the focus measure for a given lens position is acquired. At this point
the system does not know the direction towards which climb the hill so it moves the
lens on one step and acquires the new focus measure.

• Direction decision (step 2): by comparing current with previous focus measures it
is possible to understand slope and direction of the curve. If the previously selected
direction is not correct (as in the case of this example) it is inverted and lens moved
back of two positions and new focus measure acquired.

• Peak searching (steps 3-5): until the focus measure for the current lens position
is higher than the previous one the search algorithm goes on. When there is an
inversion in the focus values (step 4) the system classifies the previous position as
in-focus position and goes back there (step 5).

The main disadvantage of a search is the time spent to find the in-focus position. A
big step size may reduce the converging time with the cost of a not accurate final position;
a small step size produces an accurate estimation of the peak position with the cost of the
extra time spent to span more positions. To increase the speed of the search and guarantee
the final accurateness, HCS may be compound of two consecutive sub-searches:

• Coarse HCS: it allows to roughly estimate the in-focus position by using a coarse
search step but it is not able to accurately identify the lens position which produces
the sharpest image. The advantage of this search is that the rough in-focus position
is quickly identified by fast climbing the hill even if the starting position is far away.
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Figure 4.14 : Auto focus search example: (a) image of a resolution chart in out-of-
focus position; (b) image of a resolution chart in in-focus position; (c) full search curve
plotting values of the focus measures of the resolution chart acquired at each lens position;
the in-focus position is selected at the end of the full range spanning; (d) hill climbing
search, lens positions are selected for increasing focus measures; the search stops when
an inversion is detected.

• Fine HCS: starting from the previously approximated in-focus position, a new HCS
is performed by using a smaller step size. This fine search allows to identify the
sharpest in-focus position and to limit the extra search time by a local fine climbing
in the previously identified neighborhood.

Another critical problem which can generate a bad estimation of the in-focus position
is a change in the scene during the execution of a search. Unfortunately this exception
must be seen as a general scene change: moving objects, light changes and even hand-
shaking of camera device can affect the in-focus estimation.

Moving objects in the scene can change frequency distribution and this by conse-
quence affects the curve. Also, an object can move closer or farther from the lens causing
a shift in the peak position. If those changes happen while the control unit is estimating
the curve (slope and peak position) any full search or HCS searching algorithm fails.
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To avoid such problems the control unit adopts a few control procedures to estimate if
a scene or light change is happening. In this event the search is usually stopped and re-
sumed when the perturbation is finished. In this way the search is robust even in presence
of external perturbations.

4.3 Working Modes

The working modes hereby described are valid for any auto-focus system. Anyway for
the purposes of this book they are specifically related to a digital auto-focus system as
described in Subsections 4.2.2 and 4.2.3.
The evaluation of the frequency content of a scene is performed by computing a statis-
tic measure in a delimited area of the image. This is done either to reduce complexity
and execution time and to prioritize some portions of the image to others. Statistics are
thus collected in a limited number of regions geometrically displaced in the image. In
Fig.(4.15) are illustrated some possible examples of displacement.
By changing number and displacement of those regions it is possible to change the sensi-
tivity to focus different portions of the image allowing the control unit to adapt the focus
strategy to the scene content. In addition, each collected statistic can be weighted so
that its contribution to the final evaluation can vary. For example an extreme and widely
used weights distribution gives a null value to all the regions except the central one (spot
mode); it is used to focus small portion of the image with high precision.
Intelligent auto-focus systems are able to understand the content of the scene and con-
sequently adapt their strategy to automatically focus the main subject. Former systems,
even if had not such intelligence, provided the user the possibility to manually select a
working mode.

In the next Subsections are described the most common working modes.

4.3.1 Still Auto-focus

Still auto-focus refers to a single (or multiple) capture of a static scene (where static means
no moving objects and light changes). Main AF priority goes to achieve the sharpest im-
age. Focusing converging time and computational cost are less important. It is possible to
perform a full search (Section 4.2.3) to guarantee an exact localization of the maximum
peak of the curve. The searching zones are usually displaced to cover as more as possible
the entire image. In the examples illustrated in Fig.(4.15) the more representative config-
urations are (b), (c) and (f). A HCS can be executed instead of a full search if converging
time becomes critical.
Search can be optimized to focus the foreground, the background or specific objects in
the scene.
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(a) (b) (c)

(d) (e) (f)

Figure 4.15 : Examples of different displacement of the zones used to estimate frequency
content of the scene. Some are displaced in rectangular shape other in diamond shape.
Number of zones and displacement can vary from device to device and upon working
mode.

4.3.2 Video Auto-focus

In case of video auto-focus (also known as continuous auto-focus) scene and light changes
are part of the environment. In opposition to still auto-focus main features of this search
are focus speed and capability to maintain the scene in-focus even in presence of move-
ments. For this reason a full search cannot be used (it requires a full spanning of the whole
lens range every time a re-focus in required) while a HCS is normally implemented.
Differently from a pure HCS, in this case it is mandatory to have a few additional controls
to properly manage perturbation events:

• Light change. Statistics measure the contrast of a scene and this is influenced by the
light level. For a given static scene change of the light conditions causes a change
in the exposure settings (Chapter 3) and as consequence a change in the statistic
value, Fig.(4.16). This variation must be properly managed or the control unit tends
to evaluate it as real scene change and starts to search the new in-focus position. As
a result during the video acquisition there is a useless search (the system goes from
in-focus to out-focus and then goes back to the same in-focus position without any
change in the scene) which is interpreted as a system defect by the user. Usually a
light change is detected either with a direct link with the exposure control (through
a flag the exposure control informs the auto-focus control system that the light
is changing) or with a dedicated internal module which detects light change by
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measuring average brightness in the scene or by a combination of both methods for
a very accurate light detector based auto-focus.

• Scene change. There are different kinds of scene change which may affect the
results of a search: intra motion, which consists in single or multiple objects moving
inside the scene; inter motion, which is generally caused by a movement of the
acquisition system like panning or zooming; both. Any of those movements causes
a change in the shape of the focus curve; for example an object moving closer to the
lens causes a shift of the peak position toward the macro region. A HCS performed
during these changes fails if not properly managed. Here again to avoid visual
annoying effects to the user, or bad final focus estimation, the search is stopped and
re-executed if a movement is detected. To detect a moving object usually a local
motion estimation is computed in the same regions where the statistics are collected.
In alternative, the control system can receive a flag from the video stabilization if a
global motion, like panning, is occurring during the search. As for light change a
more accurate motion detection uses both information.

In Fig.(4.17) is illustrated a block diagram of an auto-focus control system that im-
plements an additional module to detect light and motion changes and properly manage
such situations. If a light or motion change is detected the search is not started because
the change in the statistic value is not real but caused by it. If this change happens during
a search this is stopped until the change finishes and then a new search is started again
with the new scene conditions.

Also in case of video auto-focus the search can be optimized to focus the foreground,
the background or specific objects in the scene.

4.3.3 Object Priority
Either in case of still or continuous auto-focus the search can be optimized to focus spe-
cific content of the scene. The three main classes are portrait, landscape and text. Land-
scape priority occurs every time the control unit gives priority to the infinity position. At
the opposite condition every time the system prioritizes objects in macro positions it is
settled in text mode (typical application is to take a picture of a paper or a business card).
In the midrange between macro and infinity there is the portrait mode, in which the sys-
tem tends to prioritize the foreground.
In addition to these very generic working modes during the search statistic information
collected from each zone can be separately analyzed. By using this local information
the control unit can be targeted to focus specific portions of the image having a specific
content. With reference to Fig.(4.18) most common cases of object priority modes are:

• Biggest object in the scene. In this case priority goes to the maximum number of
zones having the same behaviour. In the case illustrated zones 3 and 4 are selected
while the others are discarded. Having very similar curves, in fact, both regions are
covered either by the same object or by two different objects at the same distance
from the lens. In both cases the target of this working mode is to give priority to the
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Figure 4.16 : Examples of how changes the edge appearance by changing light conditions
and related exposure settings: (a) changes in the exposure time; (b) changes in the analog
gain; (c) visual changes in the slope of an edge when exposure settings change. In this
case the contrast from A to B decreases.
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Figure 4.17 : AF control unit block diagram with light and motion detector. If any of
them is detected either the search does not start or if already started it is blocked until the
change finishes.

most relevant portion of the scene and both regions appear to have a similar content.
At the end of the search the system selects the lens position which correspond to
the peaks of zones 3 and 4.

• Closer object to the lens. In this case the search is optimized to focus the closest
object to the lens. By separately analyzing the zones (supposing to move from
infinity to macro) the control system skips the zones which present a peak position
if there is at least a zone where the peak is not yet reached (the climbing is on the
growing phase). The search stops then the latest peak is identified. In the case of the
image it corresponds to the zone 1. Opposite behaviour when moving from macro
to infinity: the first zone which presents a peak is selected and the others discarded;
the search ends at this point. Example of this working mode is macro photography
as business card acquisition. It may be useful also as alternative to the above case
when foreground is more relevant than the background.

• Farther object from the lens. This search is the opposite of the above case. Peaks
in the infinity zone are prioritized. In the case of the picture considered as example
it corresponds to the curve 5. Target of the working mode is panorama acquisition,
where background has the priority on foreground.

• Central object (or in any specific region). In this working mode the selection cri-
terion is manually imposed by the user by activating a single (or many over all)
region. Typical application is the spot mode, where only the central zone is acti-
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vated. By settling this mode it is possible to focus specific portions if the image.
In the case under examination any of the zones can be selected and as consequence
any of the corresponding curves will produce the final in-focus selection.

• As more objects as possible. In this case the selection of the in-focus position
prioritizes the maximum number of objects in accordance to the Depth of Field,
(4.20) and (4.21). The system selects an appropriate position sensor so that as many
zones as possible are in-focus and inside the Depth of Field of the lens system. In
the case of Fig.(4.18) zones 3 and 4 are selected and lens position selected so that
zone 2 falls inside the DoF. If the system has a wider Dof more zones can fall inside
the focused area (for example zone 1 is a good candidate).

Infinity

Focus
Measure

1

2
3

4 5

Macro

Figure 4.18 : Object priority search: statistics collected through different zones (in the
example 5) have a different shape and peak position because they are related to objects
displaced at different distances from the lens. Object 1 is closest to the lens, object 5
farthest.

4.3.4 Face Priority
A special class for object detection is the face priority working mode. This priority mode
has been widely implemented in the latest years either in professional and commercial
acquisition devices. In recent years also embedded devices offer this feature. It is one
of the most wanted and used priority not only for its specificity (of course is one of the
most frequent subject of a picture) but also because from this many additional features
can be derived: from smile and blink eye detection to face priority driven exposure, and
auto white balance, and also to support red eye removal.

In Fig.(4.19(a)) detected faces are boxed in green. Depending on its orientation, it can
face the lens system but rotated, in this case it is referred as Rotation In Plane (RIP), or
can not face the acquisition system, in which case it is referred as Rotation Out of Plane
(ROP). In the case of the figure boxes numbered 7, 11, 12 and 58 are examples of RIP,
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(a)

(b) (c)

Figure 4.19 : Auto-focus in face priority: (a) examples of detection of faces in different
rotations (RIP and ROP); (b) smile detection; (c) blink eye detection: in this case two
separate eyes are localized.

the remaining are ROP with different degrees of rotation.
Once the face is identified (in the same figure box 51 validates that also an out of focus
face is identified) it is possible to prioritize the control system of the auto-focus to position
the regions where statistics are collected on top of the face (or many faces if more than
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one are detected simultaneously). The result is a picture with the face in focus. In case of
many faces the system tries to optimize the DoF so that as many faces as possible are in
focus. Otherwise bigger faces (closer to the lens) have priority on smaller (farther).

Region where the face is detected can be as well used to perform additional controls
on the face. Most used are smile (Fig.(4.19(b))) and blink eye (Fig.(4.19(c))) detection.
If activated the former is used to prevent a snapshot when the localized person’s face is
not smiling by delaying the acquisition time. Usually, system implementing this feature
let the user the possibility to select among different values of smiling (from faint to big).
Similarly the latter delays the acquisition time if a blink eye is detected. It is important
to note that in the referred figure the two eyes of a face are detected independently. This
help to tune the model to avoid the acquisition also if a single eye is shut.

4.4 Alternative Auto-focus Techniques
In the previous Sections different methods and methodologies to identify the in-focus po-
sition and opportunely drive the lens to its correct position have been described. Manda-
tory requirement for those implementations is a moving system compound of a set of
lenses (Subsection 4.1.1), a motor actuator (Subsection 4.1.2), and a control system (Sub-
section 4.2.3). All these elements require additional space and extra cost, compared to a
fixed lens system. On the contrary fixed lens systems suffers of a fixed Depth of Field
(Subsection 4.1.1, page 59) with the consequence that, under the market trends nowadays
oriented to increase sensor resolution and to decrease the focal length (for compactness
of the camera), their useful DoF decreases becoming no more adequate to guarantee the
capability to focus from 20cm to infinity (which is a widely used focus range requirement
in embedded devices).

Nevertheless low cost imaging systems for mobile applications are still mainly domi-
nated by fixed lens devices. These cameras are implementing new focus strategies to get
rid of the above described limitation: the digital auto-focus and the depth of field exten-
sion. Both approaches rely on the principle that replacing auto-focus methodologies with
dedicated image processing it is possible to achieve a final image with almost the same
benefits of a traditional focusing system, at a minor cost and dimensions.

4.4.1 Extended Depth of Field Auto-Focus

This technique is based on the fact that knowing the PSF of a lens even a blurred image can
become sharp by a convolution with the inverse of the PSF (Section 4.1.1). Starting from
these concepts many techniques have been developed as proprietary solution to extend the
original Depth of Field in embedded devices [21–24]. The basic principles on which rely
these techniques are illustrated in Fig.(4.20)3: passing through a proper filter positioned
on top of the lens system the amount of blur is controlled and limited. A post processing
software based on inverse filtering allows to reconstruct the original sharp image.

3Source: http://www.eece.hw.ac.uk/ ceearh2/Optical%20designers%27%20meet%20Sept06.6.ppt
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In Section 4.1.1 it has been seen as for any distance of the object from the lens there is
only a valid lens position, Fig.(4.21(a)), to get an in-focus image (4.1) and that, by using
the circle of confusion, the aperture of the lens and the diaphragm, it is possible to calcu-
late a lens position range, the dof (4.14), within which the object is in focus. Estimation
of the PSF for any level of blur and computation of its inverse to reconstruct the in-focus
image is a too long and expensive process. It requires a computation on the fly for any
lens position or, alternatively, many PSF functions to be stored in memory. To avoid that,
it is possible to control the level of blur and make possible to extend the same level of
blur in a wider range than a normal dof allows, as illustrated in Fig.(4.21(b)). It is usually
done by a properly designed tiny film to be placed on top of the lens system surface.
Unfortunately this process is not as straightforward as can appear. As illustrated in
Fig.(4.4(a)) a PSF has many zeros which imply a not invertible function. The PSF is
thus adapted to make it invertible and this process generates a lossy reconstruction of a
sharp image from a blurred one. These defects are visible as overshoots or halo effects
along sharp edges. In Fig.(4.22) is reported a comparison between an acquisition with
a classical lens system and the same scene acquired with a wavefront coding provided
system resulting in an extended depth of field (EDoF).

4.4.2 Picture Merging

To avoid the intrinsic problems of EDoF techniques an alternative approach consists in
taking two or more pictures of the same scene with different lens positions [25, 26]. In
this way each picture has a part of the image in focus and the entire dataset is compound
so that each part of the scene is in focus at least in an image.
The images so acquired can be properly merged together by taking from each image only

Figure 4.20 : Working scheme of principles used in wavefront coding, as illustrated
by Heriot Watt University: passing through a proper filter positioned on top of the lens
system the amount of blur is controlled and limited. A post processing software based on
inverse filtering allows to reconstruct the original sharp image.
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Figure 4.21 : Comparison of the ray height in the focal plane between a classical optical
system (a) and wavefront coded system (b) in which the height is controlled and almost
constant in a wider plane range.

(a) (b)

Figure 4.22 : Acquisition of a scene where objects are disposed at different distances: (a)
classical lens system; not all the objects can be focused in a single shot due to a limited
DoF; (b) by using a wavefront coding system the original DoF is extended and all the
objects and the background are almost in focus.

the in-focus portion; the resulting is an image where all the scene is in focus. In Fig.(4.23)
are illustrated a few examples of this technique.

Although this method requires neither computational cost nor additional lens as in
EDoF techniques it can suffers of other problems. The scene must not change during
the multiple-acquisition, which implies that either the scene is still or the framerate of
the acquisition system is so high that during the burst the movement is not relevant. As
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(a) (b) (c)

(d) (e) (f)

Figure 4.23 : Merging of images having the same scene content acquired at different lens
positions: (a)(d) back object in focus; (b)(e) front object in focus; (c)(f) resulting image
after the merging process (both foreground and background are in focus).

a consequence this approach is of difficult application in video mode. Also, jagged and
fuzzy edges make difficult the segmentation process, required to select from each image
only the portion in focus. Finally, embedded devices lens system is affected by parallax
when changing the lens position. It is visible as a sort of magnification of close to the lens
objects when changing the focus position from macro to infinity. This causes an overlap-
ping of the foreground with the background and if not properly managed halo artifacts
may appear around the foreground object as illustrated in Fig.(4.24(c)). In these cases
a more accurate edge detection and segmentation may help to reduce the visual annoy-
ing effects, specially if coupled with an opportunely tuned blending algorithm during the
merging process, as visible in Fig.(4.24(d)).

Conclusions
In this Chapter the principal characteristics of an auto-focus system for embedded devices
have been outlined, describing fundamental components, main requirements and features.
In the next product generation market trends highlight a continuous improvements of the
performances so far implemented with special regards to faster actuators coupled with
high accuracy to focus in still and video mode, either in macro and panoramic, more
functionalities as intelligent face detection, object tracking and predictive auto-focus and,
of course, more thinness and less cost of the whole device.
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(a) (b)

(c) (d)

Figure 4.24 : Effects of parallax and magnification in picture merging: (a) background
in focus; (b) foreground in focus; (c) picture merging with visible defects around the
foreground object; (d) an appropriate processing picture merging is able to remove those
defects.
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Color Rendition

A. Bruna, F. Naccari
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

Abstract: The color reproduction accuracy of digital imaging embedded devices is a key factor
of the overall perceived image quality. The human visual system, under most conditions, is able
to compensate for the effects of the scene illuminant on the perceived image. Therefore on digital
imaging devices, some processes have to be performed across the image generation pipeline in or-
der to obtain an effective color accuracy regardless of the scene illuminant and the sensor response
features. In this chapter we describe the most common color processing algorithms performed
across the image generation pipeline: white balancing algorithm, which is aimed to compensate
the effects of the illuminant power spectral distribution and the color correction process, which
compensates the mismatch between the color filters array transmittance and the color response of
the human visual system to different wavelengths. The first one, on embedded devices, is usually
performed through an image statistical analysis to obtain an estimation of the scene illuminant and
is often based on strong assumptions on scene spectral reflectance distribution. The second relies
on the characterization of the sensor color filters spectral transmittance. We illustrate the role of
such algorithms on the overall perceived color image quality and describe typical methods for
white balancing performance and sensor characterization benchmarking. We describe also some
additional algorithms which, frequently on consumer devices, can be used to improve the visual
appearance of common colored objects (e.g., skin tones, vegetation and sky).

5.1 Introduction

An image acquired by a digital camera can be seen as a function ρ mainly dependent on
three physical factors: the illuminant spectral power distribution I(λ ), the surface spectral
reflectance S(x,y,λ ) and the sensor spectral sensitivities C(λ ). Using this notation, the
sensor responses at the pixel with coordinates (x,y) can be thus described as:

ρ(x,y) =
∫

ω
I(λ )S(x,y,λ )C(λ )dλ , (5.1)

where ω is the wavelength range of the visible light spectrum, ρ and C(λ ) are three-
component vectors. Since the three sensor spectral sensitivities are more sensitive re-
spectively to the low, medium and high wavelengths, then the three-component vector
ρ = (ρ1,ρ2,ρ3) represents the sensor response to the scene (see Fig.(5.1)). The digital
conversion of the sensor response, which is performed by an analogue to digital con-
verter, leads to a numerical representation of the image, which is referred to as the sensor
or camera raw response RGB = (R,G,B) triplet. Unlike human vision, imaging devices
(such as digital cameras) cannot adapt their spectral responses to different lighting condi-
tions. To recover the original appearance of the scene under different lighting, the camera
raw response must be transformed. Such transformations are called chromatic adapta-
tion models, and are the basis of several color balancing methods available in the liter-
ature [1–3]. A chromatic adaptation model [4], does not include appearance attributes,
such as lightness, chroma and hue, but simply provides a transformation from tristimulus
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Figure 5.1 : Channels response of a digital color image sensor.

values in one viewing condition to matching tristimulus values in a second set of view-
ing conditions. Most of these models are based on the Von Kries [5,6] hypothesis, which
states that chromatic adaptation is an independent gain regulation of the three cone signals
L, M and S, through three different gain coefficients. In different models the particular
values of the coefficients are obtained with different procedures. In these models the R, G
and B channels are usually considered an approximation of the L, M and S retinal wave-
bands [7], so that the post-adaptation values, (R,G,B)awb can be obtained by a Von Kries
diagonal transform. Moreover, since the primaries of the target color space do not cor-
respond with the primaries of the sensor chromatic response, thus the chromatic adapted
response has to be modified by applying color processing that tries to match the sensor
response to output color space. The commonly adopted solution is a color matrix and a
tonal curve [8]. The chromatic sensor spectral response distribution affects the quality of
the color reproduction. In particular, if the spectral response is too wide, then some sub-
tle differences between two colored objects will not reproduced, otherwise if the sensor
spectral response is too narrow, the camera sensitivity will be reduced, thus leading to
noisy images. Manufacturers generally design the color filter array spectral response in
order to obtain the best trade-off between signal to noise performance and color gamut,
which is the subset of colors which can be accurately represented in a given circumstance
by a certain device.
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5.2 Color Processing Pipeline Model
According to the chromatic adaption models described in the previous Section, we can
represent a simplified color processing pipeline by the following equation:⎡

⎣R
G
B

⎤
⎦

out

=

⎛
⎝
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦
⎡
⎣rwb 0 0

0 gwb 0
0 0 bwb

⎤
⎦
⎡
⎣R

G
B

⎤
⎦

in

⎞
⎠

γ

(5.2)

where RGBin are the camera raw RGB values, the diagonal matrix diag(rawb,gawb,bawb)
is the independent channels gain compensation of the illuminant, the full 3-by-3 matrix
a(i, j), i, j = {1,2,3} is the color space conversion transform from the device-dependent
color filter array representation of RGB to the target color space, γ is the gamma classic
correction to map the sensor linear response to a non linear response of the human visual
system, typically defined for each color space where the final image will be represented.
Commonly, for digital imaging consumer devices, the target color space is the sRGB (e.g.,
ITU-R BT.709) . The color response of a digital camera is then mainly performed by these
two matrix operation: a diagonal transform and 3x3 color space conversion. As described
in different Chapters, numerous algorithms across the image reconstruction pipeline mod-
ify the sensor camera raw response in order to correct and improve the quality appearance
of the final image. In this Chapter we focus our attention on those processes which mainly
determine the color appearance of the final image, avoiding to further describe the possi-
ble interaction between the color processing algorithms and other algorithms of the image
reconstruction pipeline, which should be designed to not interact with the color rendition
in most conditions.

5.3 White Balance
In order to render the acquired image as close as possible to what a human observer
would have perceived if placed in the original scene, the first stage of the color correction
pipeline aims to emulate the color constancy feature of the human visual system (HVS)
(i.e., the ability of perceive relatively constant colors when objects are lit by different illu-
minants). As described before, on digital devices this process is carried out by the white
balancing process usually through a spatial uniform diagonal transform as described by
(5.3). The process can be performed in a fixed way, by associating a set of channel gains
to the most common scene illumination situations. Typically the following situations are
considered: daylight, direct sunlight, incandescent light, fluorescent light, flash gun light,
overcast, sunlight shadows. For each illuminant the set of corrective channel gains is cal-
culated off-line and depends mainly to the sensor spectral response to the light. The set
of corrective gains can be otherwise estimated, during the image processing pipeline exe-
cution, by an algorithm which is referred as automatic white balancing (AWB). Since the
gains estimation is an under-constrained problem [1,9,10], strong assumptions are usually
adopted in order to solve for it. Such assumptions are generally related to the spectral dis-
tribution of the scene reflectance. In this case the set of corrective gains mainly depends
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(a) Incandescent light (b) Fluorescent light (c) Correct appearance

Figure 5.2 : Scene appearance under different illuminants and their correct white bal-
anced version.

on statistical distribution of pixels levels, other system metadata and on the sensor chro-
matic response. Some professional cameras can use other specific sensors to estimate the
illuminant; consumer devices perform the estimation of corrective gains just on the digi-
tal raw image features. The following equation describes the white balancing application
process:

⎡
⎣ R

G
B

⎤
⎦

wb

=

⎡
⎣ rg 0 0

0 gg 0
0 0 bg

⎤
⎦
⎡
⎣ R

G
B

⎤
⎦

in

(5.3)

5.3.1 White Balancing Estimation Techniques

All embedded digital imaging systems implement an automatic estimation of the white
balancing coefficients (rg,gg,bg) of the diagonal matrix of (5.3). Several methods exist in
the literature with some excellent comparisons and reviews [1, 2, 9]. Since illuminant es-
timation on the sensor raw image is in a strictly way an under constrained problem, some
strong assumptions have to be made on the scene reflectance distribution. In Fig.(5.2)
are reported two captured images of the same scene under different illuminants. They
are raw sensor images represented as color images, where no color interpolation has been
performed. In Fig.(5.2(c)) is reported the correct white balanced image as it should appear
if the corrective estimated gains were perfect, starting from both the different conditions.

One of the most common assumption is widely known as the gray-world assumption.
It assumes that, given an image of sufficiently varied colors, the average surface color
in a scene is gray [11, 12]. Hence, the shift from gray of the measured averages on the
different chromatic channels is due to the color of the illuminant. In most conditions,
where complex scenes are represented, it has a good match with the scene features. The
three scaling coefficients in (5.3) are therefore set to compensate the shift from gray.
Assuming that the channels averages are (Ravg,Gavg,Bavg), the corrective gains can be
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easily calculated as follows:

⎡
⎣ rg

gg
bg

⎤
⎦ =

⎡
⎢⎢⎣

Rgray
Ravg
Ggray
Gavg
Bgray
Bavg

⎤
⎥⎥⎦ (5.4)

where Rgray = Ggray = Bgray are typically the coordinates of middle tone gray (e.g., 128
for a 8-bit representation). Another common assumption is based on the hypothesis that
the brightest object on the scene is white, thus it reflects the spectrum of the light. In this
case the white balancing correction gains can be calculated:

⎡
⎣ rg

gg
bg

⎤
⎦ =

⎡
⎢⎣

Rwhite
Rmax

Gwhite
Gmax
Bwhite
Bmax

⎤
⎥⎦ (5.5)

where Rwhite = Gwhite = Bwhite are the reference signal levels for white representation
and Rmax = Gmax = Bmax are generally the channels average levels of the brightest area
of the scene. On complex scenes both these assumptions have often a good match. When
few objects and colors are represented, these often fail, thus producing poor white balanc-
ing result and evident color cast. In practice, scenes with few highly chromatic objects,
such as closeup or macro images, have a poor match with the gray world assumption. In
such situations, assuming that the average reflectance of the entire scene is gray could be
risky and leads to a poor white balancing estimation. Moreover, the system acquisition
limits, like noise, vignetting and limited dynamic range can affect the white balancing
estimation effectiveness. In particular the white patch assumption could be broken in the
case of noisy low light situations, where signal spikes could be erroneously considered as
coming from a white reflectance object. Moreover, the limited dynamic range of the sen-
sors used on embedded devices, produces in most situation clipped signals, thus providing
a distorted representation of the white objects. Usually, in order to reinforce the assump-
tions and limit the interaction between system distortions and white balancing estimation,
more sophisticated algorithms can be implemented. Image color based segmentation can
be used to limit the image statistical analysis to the regions where the matching with
the underlying assumption is higher. Authors in [13–15] investigate the role of low and
high chromatic objects on the white balancing estimation. These approaches increase
the weight of the neutral objects during the image statistical analysis, thus providing bet-
ter results when the whole actual image is not neutral. A statistical investigation on the
chromaticity distribution of the image has been proposed by the authors in [16], relying
mainly on the observation [17] that not all possible chromaticities can be reproduced by
a sensor under all possible source lights. This approach requires a sensor chromatic re-
sponse characterization by analyzing the chromaticity distribution that a sensor produces
under specific illuminants on a set of several reflectances [18]. This information and
the observed chromaticity of an image, on which the illuminant is to be estimated, are
statistically processed. A correlation matrix between the image data and each possible
illuminants is calculated, thus producing a likelihood score for each illuminant. All con-
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sidered illuminants can be assumed with the same probability, but further assumptions can
be done on the statistical distribution of common light sources. The relationship between
the camera color response and the signal level has been also investigated [19], demon-
strating that brighter pixels have a greater impact on the illuminant estimation process
than the darker areas of the image. The color response of the sensor is strictly related to
the color filter array spectral response. Highly correlated spectra tend to produce quite
similar chromaticity gamuts under different source lights. In order to improve the sep-
aration of chromatic response under different source lights, some authors [20, 21] have
proposed a pre-processing step aimed to reduce the sensor spectral correlation before the
color constancy image processing step, showing that evident benefits could be obtained.
Moreover, the color representation domain has also a role in the illuminant estimation
accuracy as demonstrated in [22]. As mentioned above, most of these techniques produce
an effective source light estimation when the image to be classified contains a lot of dif-
ferent colors. Other color representation models have been investigated, which could be
able to produce an estimation on image with only two colors [23–25]. They are based on
the dichromatic reflection model (DRM) , which can be described as follows:⎡

⎣ R
G
B

⎤
⎦ = α

⎡
⎣ Ro

Go
Bo

⎤
⎦+β

⎡
⎣ Rw

Gw
Bw

⎤
⎦ (5.6)

where (Ro,Go,Bo)t is the color of an object diffused reflection and (Rw,Gw,Bw)t is
the color of the specular reflection (i.e., the color of the illuminant). The model states the
observed colors of an object with homogeneous color (R,G,B)t are then distributed on a
plane in the RGB color space. Hence, if another homogeneous object is present in the im-
age with colors (R′,G′,B′)t , will be distributed on another plane of the color space. Since
the illuminant is the same for both objects, then the two planes intersect at the illuminant
color vector. The illuminant estimation process, which in theory could be performed on
images with just two colored objects, relies then on the segmentation of colored objects
and the estimation of the intersection line (parametrized by α and β ) which describes
the illuminant color. The object segmentation and the identification of color planes is
the critical factor for the effectiveness of such approach. A two-dimensional dichromatic
model can also be adopted. The chromaticity diagram can be calculated by the following
equation on the normalized CIE-xy normalized plane:

x =
X

X +Y +Z
(5.7)

y =
Y

X +Y +Z

where X ,Y,Z are the tri-stimulus values of CIE 1931 XYZ color space [26]. If many
objects are present on the scene, the chromaticity of the light can be calculated as the
intersection of the multiple lines that are related to different objects on the chromaticity
plane. The object identification is a key factor for the effectiveness of the source light
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color estimation on both three and two-dimensional dichromatic based models. Dichro-
matic model have been proposed also for the general problem of the mixed light situations,
where not just one dominant illuminant is present on the scene. In fact in color science, it
is known that the chromaticity of the mixture of two colored lights is on the straight line
between the chromaticities of the two colors on a chromaticity diagram. A common case
of mixed light situation is related to the separation of shadows on the images [27], which
could lead to a basic scheme of image segmentation for the detection of the dominant light
of the image and then to possible spatial adaptive correction [28] for illuminant effects.

5.3.2 Pixels vs. Colors

As described previously, different domains can be used in order to analyze the image
features to the aim of solving the color constancy problem. Most of classic approaches,
like gray world typically adopt a pixel based analysis, thus giving more relevance to
objects that fill most of the scene. Accurate segmentation process can be required in
order to minimize the effects of dominant objects on the estimation of light source color.
The wide diffusion of digital photography and mobile camera phones has leaded users to
take photos that probably would have not been taken with classical film cameras. Most
of these unusual pictures can easily be critical for light source estimation. In this Section
we want to describe what happens when few colors are present on the scene if we adopt
either a pixel based analysis or a color based analysis of the image. Commonly, close
up situations belong to this risky category, since objects tend to cover most of the scene
with few colors, thus producing a mismatch with widely used gray world assumption
to solve for color constancy. Fig.(5.3) reports a scheme of a critical situation with few
colored objects present on the scene, where the black frame represents the viewfinder
position. It is easy to observe that a small movement on hand held cameras, as described
in Fig.(5.3) can easily modify the scene observed by the device Fig.(5.3(b)). If we look
at the image statistics in terms of pixels, the color histograms of the image change with
such small shift, but if we look just at the image colors, these will be unchanged by such
small movements.

In order to clarify the role of the colors and pixels it is possible to observe on a real
scene what happens when few colored objects are introduced on the scene. Fig.(5.4)
reports two different fields of view of the same scene and the effects that the addition of
few colored objects can produce on the distribution of the chromaticity, reported in the
normalized rb channels plane. On the left just one dominant color is present on the scene,
thus producing poor information for the source light color estimation. On Fig.(5.4(b)) it
is evident that few colored objects added to the field of view add more information that
can be used to estimate the source light color.

5.3.3 Source Light Classification

The illuminant estimation relies on the concept of CCT (correlated color temperature),
which describes a light source as the correlated absolute temperature (Kelvin) of the
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FOV 1

(a) Position 1

FOV 2

(b) Position 2

Figure 5.3 : Simulation of a close-up scene with two different fields of view.

(a) A single dominant color scene and related
chromaticity distribution on the rb normalized
plane

(b) The same scene with few more colored objects
and the related chromaticity distribution on the rb
normalized color plane

Figure 5.4 : Chromaticity distribution of a scene with a single dominant color and the
effects of the addition of few colored objects on the chromaticity distribution.
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blackbody radiator. The equation of the spectral radiant power of the blackbody radi-
ators [29], as a function of temperature T (Kelvin) is given by the following:

M(λ ) =
c1λ−5

e
c2
λT −1

(5.8)

where:

c1 = 3.7418×10−16 W
m2 (5.9)

c2 = 1.4388x10−2W
K

(5.10)

and λ is the wavelength in m.
For an arbitrary light source, the correlated color temperature is defined as the color tem-
perature of the blackbody radiator that is closest to the illuminant. Common light sources,
like incandescent light and daylight have a correlated color temperature of 2900K and
6500K respectively. Fig.(5.5) describes the white point distribution of different black-
body radiator light sources on the CIE (Commission International de l’Eclairage) [26] xy
chromaticity diagram. Differences in color temperature do not correspond to equal per-
ceptual color differences. In particular, color differences at low color temperatures gen-
erate a greater perceived difference than the same color temperature difference at higher
color temperatures. Some empirical metrics have also been developed to deal with this
perceptive non uniformity [30, 31].

5.3.4 Color Errors

The color space XY Z is not perceptually uniform. This means that at equal distances
in the XY Z space do not correspond equal perceived distances. The XY Z space can be
transformed to a more nearly uniform CIE 1976 L∗a∗b∗ (CIELab) color space. Here are
reported the equations to transform the XY Z coordinates to the L∗a∗b∗ space:

L∗ = 116
[

f
(

Y
Yn

)
− 16

116

]
(5.11)

a∗ = 500
[

f
(

X
Xn

)
−
(

Y
Yn

)]
(5.12)

b∗ = 200
[

f
(

Y
Yn

)
−
(

Z
Zn

)]
(5.13)

f (x) =

{
x

1
3 i f x > 0.008856

7.787x+ 16
116 otherwise

(5.14)

C∗
ab =

√
a∗2 +b∗2 (5.15)
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Figure 5.5 : White point position of different light sources on the CIE chromaticity dia-
gram

h∗ab = tan−1
(

b∗

a∗

)
(5.16)

where Xn, Yn and Zn are the tristimulus values of the reference white, L∗ denotes the
lightness, a∗ and b∗ denote chromaticity, C∗

ab denotes chroma, and h∗ab denotes hue. The
CIELab equations were derived in such a way that the illuminant is always at L∗ = 100,
a∗ = 0, b∗ = 0, thus defining the illuminant as the reference white. The Euclidean color
difference ΔEab in the L∗a∗b∗ color space of the L∗

1,a
∗
1,b

∗
1 point from a reference L∗

0,a
∗
0,b

∗
0

point can be then calculated as:

ΔEab =
√

(ΔL)2 +(Δa)2 +(Δb)2 (5.17)

where:

ΔL = L∗
1 −L∗

0 (5.18)

Δa = a∗1 −a∗0 (5.19)

Δb = b∗1 −b∗0 (5.20)
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In 1994 the CIE introduced a new formula to calculate color difference aimed to be
more perceptually uniform than the ΔEab metric [32]. This color difference, known as
ΔE94 is widely used and reported below:

ΔE94 =

√(
ΔL∗

kLSL

)2

+
(

ΔC∗

kCSC

)2

+
(

ΔH∗

kHSH

)2

(5.21)

where:

ΔH∗ =
√

(Δa∗)2 +(Δb∗)2 +(ΔC∗)2 (5.22)

SL = 1 (5.23)

SC = 1+K1C1 (5.24)

SH = 1+K2C2 (5.25)

and kL = kC = kH = 1 for reference conditions; K1 = 0.045 and K2 = 0.015. Other met-
rics, aimed to compare whole images rather than single colors, have been proposed and
developed [32–34]. They take into account also spatial aspects of the color perception
according to human visual system features.

5.3.5 Automatic White Balancing Error
Most of the automatic white balancing estimation techniques rely on a statistic analysis of
the image features. Hence it is quite important evaluating how the different algorithms are
sensitive to some specific combinations of ambient illuminants and image features. It is
possible using lab techniques to evaluate the estimation performance of white balancing
algorithms. Light booths and color checkers can be used to do it, but scene composition
in this case is quite different from typical field test images, thus leading to a difficult
evaluation of the reliability of the automatic estimation. Authors in [35] describe a method
aiming to evaluate the estimation error of white balancing algorithms by using neutral
reference present on common scenes to retrieve the target white balancing correction
parameters. In this Section we describe a method for a comparative analysis of different
approaches to white balancing estimation on field test images, aimed to evaluate also
the effects of the automatic white balancing estimation on the final color rendition of the
image. The method consists of a data set of calibrated raw images and a framework aimed
to perform a quantitative evaluation of the different automatic white balancing estimation
techniques. A neutral reflectance target, inserted on the scene near the subject, allows to
read the color of the light and the related target correction parameters. This provides for
the entire data set the color channel gains that should be applied for a perfect illuminant
compensation. The set of calibrated images is then processed by the other algorithms of
the image processing pipeline and the images coming out from the estimation process are
then compared with the ones coming from the target channel gains application used as
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Figure 5.6 : Block scheme of an auto white balancing evaluation framework.

reference, thus providing a color error measure. Fig.(5.6) report the block scheme of the
described framework.

Fig.(5.7) reports a section of a test report obtained by the evaluation framework. On
first column are reported the colored and brightness adjusted versions of the input raw
images, on the second column are reported the target output reference images, whereas
on the remaining columns the output images, coming out from six different auto white
balancing estimation algorithms, are reported. It is widely accepted that the perfect es-
timation algorithm for all situation does not exist, hence a potential improvement to the
estimation confidence can be achieved by combining multiple estimation techniques ac-
cording either to specific algorithm or scene features [36, 37].

5.4 Color Correction

The second stage of the color processing pipeline, as described by (5.2), transforms the
image data into a standard RGB (e.g., ITU-R BT.709) color space. This transformation,
commonly referred as color matrixing, is required because the spectral sensitivity of the
sensor color channels rarely match those of the desired output color space. Typically on
three channels sensors this transform is carried out by a 3-by-3 matrix with 9 variables to
be optimally determined either by algebraic [38] or optimization-based methods [39]. In
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Figure 5.7 : A test report for the evaluation of different white balancing estimation tech-
niques.
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(a) The color checker appearance before color
matrix application

(b) The color checker appearance after color
matrix application towards sRGB color space

Figure 5.8 : A color checker as it appears before and after the color matrix application
process.

the following a compact version of (5.2) is reported:

RGBout = (A · Iw ·RGBin)γ (5.26)

where Iw and A represent the diagonal matrix for the illuminant compensation and
the color matrixing transformation respectively. Given a set of n different patches whose
sRGB target values r are known, and the corresponding camera raw values c measured
by the sensor when the patches are lit by a particular illuminant, what is usually done is
to find the matrix M that satisfies:

M = arg

(
min

A∈R3×3

n

∑
k=1

E (rk,(AIwck)γ)

)
(5.27)

where E is the chosen error metric, and the subscript k indicates the kth patch. Usually
the error metric E is performed by the computation of the average ΔE94 colorimetric er-
ror between the reference and calculated sRGB values mapped in the CIELab color space.
The coefficients of the diagonal illuminant compensation Iw are previously computed in
order to perfectly compensate for the chosen illuminant. In order to avoid that the color
transform affect the compensation for the source light, some constraints are introduced.
This is usually carried out by constraining the coefficients of the matrix M to generate an
illuminant preserving transform. Typically the nine degrees of freedom of the matrixing
transformation are then reduced to six, in order to have a white point preserving transfor-
mation, (i.e., a neutral color in the device dependent color space is mapped to a neutral
color in the device independent color space). This can be easily obtained constraining
the coefficients of each row of M to sum to one. Fig.(5.8) reports a color checker as
it appears before color matrix application Fig.(5.8(a)) and after the color matrix trans-
form from color filter array response to sRGB color space Fig.(5.8(b)). The color matrix
applied has been derived through a minimization process as described by (5.27).
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(a) Color patches chromaticity on L∗a∗b∗ space
before color matrix application and target posi-
tion

(b) Color patches chromaticity on L∗a∗b∗
space after color matrix application and target
position

Figure 5.9 : Representation of the camera chromatic response for a color checker on
L∗a∗b∗ space before and after color matrix application.

A useful representation of the sensor chromatic response can be performed on the
L∗a∗b∗. This can give information about the colorimetric error performed on a single
color patch by the application of the color matrix resulting from the minimization pro-
cess. Fig.(5.9) reports the distribution of the color patches a∗ and b∗ components. These
are reported before and after the color matrix application, together with the target chro-
maticities position that they should have through a perfect color matrix transform toward
sRGB color space.

5.4.1 Constrained Color Correction

Usually the color matrix transform is optimized for a single scene condition and for all
the color patches of the reference color checker at the same time. According to wide
diffused user modes on digital imaging devices it is also possible to constrain the color
matrix characterization to produce better colorimetric results in some specific situations.
A possible solution can be obtained by performing different minimizations according to
some typical scene preset modes, (i.e., landscape, portrait), thus leading to different color
matrices for different scene modes. By using a not uniform weighting function for the
reference patches rather than giving to all the patches the same importance, it is possible
to generate color matrices with a less colorimetric error on specific patches. For example
a portrait preset requires to give more importance to the skin tone patches, whereas for
landscape situations the vegetation and sky tone patches have more importance than other
patches. Equation (5.27) can be then easily modified to take into account a weighting
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function for the different color patches:

M = arg

(
min

A∈R3×3

n

∑
k=1

ωkE (rk,(AIwck)γ)

)
(5.28)

where ωk indicates the relative weight of the kth color reference patch.
Another possibility is also to constraint the color matrix coefficients in order to take

into account also different exposure or illuminant situations. As mentioned above, usually
the color matrix coefficients are retrieved starting from a single ambient light situation,
which is commonly chosen according to statistical analysis of photo scene type distribu-
tion. If multiple data sets are collected under different light sources, the minimization
process can be also extended to take into account different situations. The light sources
distribution can be either uniform or related to a-priori probabilistic distribution analysis,
usually coming out from a statistical analysis of the most common scenes grabbed on
consumer devices. The (5.28), in the case of m different data set, can be further extended
as follows:

M = arg

(
min

A∈R3×3

m

∑
j=1

α j

(
n

∑
k=1

ωkE
(
rk,(AIw jck j)

γ)))
(5.29)

Other ambient light situations can be also taken into account in the minimization
process in order to derive an overall optimal color matrix, but this could lead to sub
optimal color accuracy under common situations. Adaptive solutions with multiple sensor
chromatic response characterization and the use of different color matrices in different
situations can also rely on the estimation algorithms of the image pipeline, such as auto-
focus, auto-exposure and auto white-balancing, which can produce useful metadata for
the choice of the optimal color correction to be applied.

5.4.2 Trade Offs on Color Correction
The color filter array spectral distribution rarely matches those of the color space where
the final image will be represented. As previously reported, this requires always the color
matrix correction operation. In Section 5.4 we described how this color matrix can be
derived through a sensor chromatic characterization. The color matrix coefficients are
strictly related to the spectral transmittance of the color filter arrays, the way the sensor
responds to the different wavelengths of the incident light. If the filters color spectral
responses are very wide, then many subtle difference of color can be represented, thus
producing a wide gamut color response (i.e., the number of different color that the device
is capable to represent). Moreover, if the color filters have a wide spectral response,
the greater channels spectral correlation requires a stronger color transform to correct
the mismatch between the sensor primaries and the sRGB primaries, producing color
matrices with bigger coefficients. This can lead to a consistent signal degradation as will
be described later. On the contrary if the sensor responses are not wide, then less color
spectral correlation leads to a color matrix with smaller coefficient, since the mismatch
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between sensor primaries and sRGB primaries can be easily corrected. Narrow spectral
responses though produce smaller channels response levels with lower signal to noise
ratio. Therefore, many trade-offs must to be considered in the sensor design process to
deal with color accuracy, color gamut extension, and color processing signal to noise
ratio degradation [40–42]. In order to explicit the signal degradation of the color matrix
application let consider the 5.2. For a neutral image let consider the red channel output:

Ro = a11Ri +a12Gi +a13Bi (5.30)

Each channel has a certain amount of noise, then we can calculate the variance of the
output channels as follows:

σ2
Ro

= a2
11σ2

Ri
+a2

12σ2
Gi

+a2
13σ2

Bi
(5.31)

If we assume that the noise is equal for all channels, then:

σRi = σGi = σBi = σi (5.32)

and:

σ2
Ro

= (a2
11 +a2

12 +a2
13)σ

2
i (5.33)

then, the ratio between the output and input standard deviation of the red channel can be
calculated

σRo

σRi

=
√

(a2
11 +a2

12 +a2
13) (5.34)

Similar considerations can be done for all other channels. If we consider the neutral
preserving constraint applied to the rows of the color matrix, this ratio is greater than
one, thus producing a signal to noise ratio degradation after the color matrix application.
Therefore, the ideal color matrix, which does not produce noise amplification, should be
the 3 by 3 identity matrix and it is possible just when a perfect match between sensor pri-
maries and sRGB primaries is obtained. The trade-off between color signal degradation,
color gamut extension other than technological constraints drive the color filters response
design.

5.5 Color Rendition Enhancements
Due to physical and computational constraints often on consumer embedded devices, the
color reproduction is a trade-off between color accuracy and the devices capabilities [43].
The large diffusion on consumer market of digital imaging devices, suggests solutions
aimed to enhance the color appearance especially for such chromatic classes which have
the most perceptive impact on the human visual system [44–46]. In this Section we
describe a possible application for embedded devices aimed to automatically improves
such chromatic classes, in particular skin, vegetation, and sky tones in a selective way
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Figure 5.10 : Block scheme of the selective color enhancement process.

[47,48]. This solution improves the color appearance for the mentioned chromatic classes,
and has been designed to be performed in a cost effective way on embedded devices,
by an automatic chromatic classifier driven by a statistical characterization of a large
image database of natural scenes, followed by an adaptive color enhancement process. In
Fig.(5.10) a scheme of the application is reported.

The algorithm recognizes image areas (e.g., skin, vegetation, sky) and corrects them
towards a set of programmable chromatic targets. It is mainly a post processing solution
and it can be either implemented in a full image processing pipeline architecture or as
a stand-alone algorithm. Generally, output devices are calibrated in order to reproduce
with a controlled error most colors without any consideration to the preferred chromatic
classes. This approach tries to minimize the amount of color reproduction errors on a
limited set of preferred classes without affecting the color accuracy of other chromatic
classes, assuming that the human visual system does not perceive in the same way differ-
ent chromatic objects, thus focusing on which have the most perceptive impact. A large
image database of high quality natural sRGB images has been collected in order to extract
and characterize chromatic information related to the classes under investigation. All the
images were chosen according to a perceived naturalness principle. Images affected by
severe color cast and/or anomalous color distortions were not considered. An automatic
segmentation algorithm [49], aimed to extract homogeneous chromatic regions, was also
used to avoid collecting statistics on excessively scattered color samples. Fig.(5.11(a))
reports the chromaticity of different classes where each point represents not just a pixel
but a color segment belonging to each chromatic class. The chromaticity coordinates are
represented by the normalized red and green channels. For a pixel of RGB coordinates,
the red and green chromaticity coordinates are calculated as follows:
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Figure 5.11 : Distribution and model of natural objects chromatic classes.

r =
R

R+G+B
(5.35)

g =
G

R+G+B

Starting from the collection, a statistical model has been obtained through a princi-
pal component analysis of each chromatic class. This model drives the automatic pixel
classification process by retrieving the membership class and the probability level of each
pixel. A global distance to the chromatic targets is then calculated for each chromatic
cluster. A graphical representation of the chromatic classification model is reported in
Fig.(5.11(b)).

This model can be either implemented as a functional model through a two dimen-
sional Gaussian function or by a look up table which entries are the chromaticity coor-
dinates, whereas the content is the belonging class and the degree of the classification
estimation process. Formula (5.36) implements a two dimensional Gaussian function of
a single chromatic class, where parameters come from the principal component analysis
step of data characterization:

Gc(r,g) = e
{ [−(r−rt )cosα−(g−gt )sinα]2

2σ2r
}{ [−(r−rt )sinα+(g−gt )cosα]2

2σ2g
}

(5.36)

The enhancement process takes into account both the classification results and the pro-
grammable targets position in order to move each chromatic cluster toward the expected
position. For a pixel classified as belonging to chromatic class c, an intensity preserving
chromatic shift is carried out, according to:
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R′ = 3I(r +Δrc)
G′ = 3I(g+Δgc) (5.37)
B′ = 3I[1− (r +Δrc)− (g+Δgc)]

where Δrc and Δgc represent the distance of the chromatic cluster c to its selected
chromatic targets, and I is the average intensity of the input RGB pixel. The RGB output
coordinates are then derived by a linear combination of the input values and the target
levels:

Ro = wcR′ +(1−wc)R
Go = wcG′ +(1−wc)G (5.38)
Bo = wcB′ +(1−wc)B

where, wc is a correction weight resulting from the classification process. In Fig.(5.12)
two examples are reported with input images, their relative chromatic classification masks,
and output images after processing. The images reported in the central column of the fig-
ure come out from the pixel based chromatic classification (red for skin tones, green for
vegetation, blue for sky). Since this classification drives the color enhancement process,
not classified pixels (black pixels) will be not affected by the processing, thus leading to
a selective enhancement of specific chromatic classes, which could be not performed by
a typical global saturation-hue enhancement.

5.6 Conclusions
This Chapter has surveyed the main color processing techniques across the image gen-
eration pipeline. A simplified model has been proposed in order to highlight the main
problems related to the ambient light source estimation and sensor chromatic response
characterization and correction. We have provided an overview of most common ap-
proaches to light sources estimation pointing out also to most recent research fields about
the estimation of multiple light sources present on the scene. We have described also
different strategies that can be followed on embedded devices in order to characterize and
correct the chromatic sensor response, describing also a potential adaptive color enhance-
ment technique for most common natural scene images. The computational resources
limitation, usually present on imaging embedded devices, heavily limits the complexity
of the color processing algorithms. The development of more sophisticated color pro-
cessing models for both complex image scenes and the human visual system features, is
though a promising challenge for color imaging applications of the next future devices,
when greater computational resource will be also common on embedded imaging sys-
tems.
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Figure 5.12 : Two natural scene images (on the left), their chromatic classification map
(on the center) and the output color enhanced images (on the right).

112   Image Processing for Embedded Devices Bruna and Naccari 

 

   



Bibliography
[1] S. D. Hordely, “Scene illuminant estimation: Past, present, and future,” Color Re-

search & Application, vol. 31, no. 4, pp. 303–314, 2006.

[2] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color con-
stancy algorithms–part i: Methodology and experiments with synthesized data,”
IEEE Transaction on Image Processing, vol. 11, pp. 972–984, Sept 2002.

[3] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color
constancy algorithms–part ii: Experiments with image data,” IEEE Transaction on
Image Processing, vol. 11, pp. 985–996, Sept 2002.

[4] M. D. Fairchild, “Color appearance models,” Addison Wesley, 1997.

[5] J. von Kries, “Chromatic adaptation - originally published in festschrift der albrecht-
ludwigs-universitat (1902),” D.L. Ed. Sources of Color Vision, MIT Press, Cam-
bridge, 1970.

[6] J. A. Worthey and M. H. Brill, “Heuristic analysis of von kries color constancy,”
Journal of the Optical Society of America, vol. 3, pp. 1708–1712, 1986.

[7] E. H. Land and J. McCann, “Lightness and retinex theory,” Journal of the Optical
Society of America, vol. 61, no. 1, pp. 1–11, 1971.

[8] R. Gonzalez and R. Woods, Digital Image Processing 2nd Edition. Prentice Hall,
2002.

[9] K. Barnard, “Practical colour constancy,” PhD thesis, Simon Fraser Univ., School of
Computing Science, 2000.

[10] Y. Yang and A. Yuille, “Sources from shading,” Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR91), pp. 534–539, 1991.

[11] S. Tominaga and B. A. Wandell, “Standard surface reflectance model and illuminant
estimation,” Journal of the Optical Society of America, vol. A, no. 6, pp. 576–584,
1989.

[12] G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin
Inst., vol. 310, pp. 1–26, 1980.

[13] T. J. Cooper, “A novel approach to color cast detection and removal in digital im-
ages,” Proceedings of SPIE, vol. 3963, pp. 167–175, 1999.

[14] T. J. Cooper, “Color segmentation as an aid to white balancing for digital still cam-
eras,” Proceedings of SPIE, vol. 4300, pp. 164–171, 2000.

[15] F. Gasparini and R. Schettini, “Color balancing of digital photos using simple image
statistics,” Pattern Recognition, vol. 37, pp. 1201–1217, 2004.

Color Rendition Image Processing for Embedded Devices   113 

 

   



[16] G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Color by correlation: A simple,
unifying framework for color constancy,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, pp. 1209–1221, November 2001.

[17] D. Forsyth, “A novel algorithm for color constancy,” Internation Journal of Com-
puter Vision, vol. 5, pp. 5–36, 1990.

[18] M. Vrhel, R. Gershon, and L. Iwan, “Measurement and analysis of object reflectance
spectra,” Color Research and Application, vol. 19, no. 1, pp. 4–9, 1994.

[19] S. Tominaga, S. Ebisui, and B. Wandell, “Scene illuminant classification - brighter
is better,” Journal of the Optical Society of America, vol. 18, pp. 55–64, 2001.

[20] K. Barnard and B. Funt, “Experiments in sensor sharpening for color constancy,”
Proceedings of IS&T sixth Color Imaging Conference: Color Science, Systems and
Applications, pp. 43–46, 1998.

[21] G. Finlayson, M. Drew, and B. Funt, “Spectral sharpening: sensor transformations
for improved color constancy,” Journal of the Optical Society of America, vol. 11,
pp. 1553–1563, 1994.

[22] F. Xiao, J. Farrell, J. D. Carlo, and B. Wandell, “Preferred color spaces for white
balancing,” Proceedings of SPIE-IS&T Electronic Imaging, vol. 5017, pp. 342–350,
2003.

[23] J. Tajima, “Illumination chromaticity estimation based on dichromatic reflection
model and imperfect segmentation,” Proceedings of IAPR Computational Color
Imaging Workshop (CCIW09), vol. 5646, pp. 51–61, March 2009.

[24] J. Toro, “Dichromatic illumination estimation without pre-segmentation,” Pattern
Recognition Letters, vol. 29, pp. 871–877, May 2008.

[25] M. Ebner and C. Herrmann, “On determining the color of the illuminant using the
dichromatic reflection model,” Pattern Recognition, Lecture Notes on Computer Sci-
ence, vol. 3663, pp. 1–8, 2005.

[26] “Cie,” 1931.

[27] G. Finlayson, S. Hordley, M. Drew, and C. Lu, “On the removal of shadows on
images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 1, pp. 59–68, 2006.

[28] E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand, “Light mixture estimation
for spatially varying white balance,” Proceedings of ACM International Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH08), pp. 1–7, 2008.

[29] G. Wyszecki and W. S. Stiles, “Color science: Concepts and methods, quantitative
data and formulae,” Wiley, New York, 2000.

114   Image Processing for Embedded Devices Bruna and Naccari 

 

   



[30] D. B. Judd, “Sensibility to color-temperature change as a function of temperature,”
Journal of the Optical Society of America, vol. 23, pp. 127–134, 1933.

[31] S. Tominaga and B. A. Wandell, “Natural scene-illuminant estimation using the sen-
sor correlation,” Proceedings of the IEEE, vol. 90, pp. 42–56, January 2002.

[32] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: Im-
plementation notes, supplementary test data, and mathematical observations,” Color
Research & Applications, vol. 30, no. 1, pp. 21–30, 2005.

[33] G. Johnson and M. Fairchild, “A top down description of S-CIELAB and
CIEDE2000,” Color Research and Application, vol. 28, pp. 425–435, 2009.

[34] X. Zhang and B. Wandell, “A spatial extension of CIELAB for digital color-image
reproduction,” Journal of the Society for Information Display, vol. 5, no. 1, pp. 61–
63, 1997.

[35] F. Ciurea and B. Funt, “A large image database for color constancy research,” Pro-
ceedings of IS&T Eleventh Color Imaging Conference, pp. 160–164, 2003.

[36] A. Gijsenij and T. Gevers, “Color constancy using natural image statistics,” Pro-
ceedings of International Conference on Computer Vision and Pattern Recognition
(CVPR07), pp. 1–8, 2007.

[37] S. Bianco, F. Gasparini, and R. Schettini, “A consensus based framework for illumi-
nant chromaticity estimation,” Journal of Electronic Imaging, vol. 17, no. 2, pp. 1–9,
2008.

[38] P. M. Hubel, J. Holm, G. D. Finlayson, and M. S. Drew, “Matrix calculations for dig-
ital photography,” in Proceedings of the IS&T/SID Fifth Color Imaging Conference,
pp. 105–111, 1997.

[39] S. Bianco, F. Gasparini, A. Russo, and R. Schettini, “A new method for RGB to
XYZ transformation based on pattern search optimization,” IEEE Transactions on
Consumer Electronics, vol. 53, no. 3, pp. 1020–1028, 2007.

[40] J. Buzzi, F. Guichard, and H. Hornung, “From spectral sensitivities to noise charac-
teristics,” Proceedings of SPIE-IS&T Electronic Imaging, vol. 6502, 2007.

[41] S. Quan, “Evaluation and optimal design of spectral sensitivities for digital imag-
ing,” PhD thesis - Rochester Institute of Technology, 2002.

[42] G. Sharma, “Digital color imaging handbook,” CRC Press, 2003.

[43] U. Barnhfer, J. M. D. Carlo, B. Olding, and B. A. Wandell, “Color estimation error
trade-offs,” Proceedings of SPIE-IS&T Electronic Imaging, vol. 5017, 2003.

Color Rendition Image Processing for Embedded Devices   115 

 

   



[44] S. Yendrikhovskij, F. Blommaert, and H. de Ridder, “Optimizing color reproduction
of natural images,” Proceedings of Sixth Color Imaging Conference: Color Science,
Systems, and Applications, pp. 140–145, November 1998.

[45] E. Lee and Y. Ha, “Favorite color correction for favorite colors,” IEEE Transaction
on Consumer Electronics, vol. 44, pp. 10–15, Feb. 1998.

[46] D.-H. Kim, H.-C. Do, and S.-I. Chien, “Preferred skin color reproduction based on
adaptive affine transform,” IEEE Transactions on Consumer Electronics, vol. 51,
pp. 191–197, Feb. 2005.

[47] F. Naccari, S. Battiato, A. Bruna, A. Capra, and A. Castorina, “Natural scenes
classification for color enhancement,” IEEE Transactions on Consumer Electron-
ics, vol. 51, pp. 234–239, Feb. 2005.

[48] F. Naccari, A. Bruna, A. Castorina, and S. Curti, “Color refinement for natural scene
images,” Proceedings of IEEE International Conference on Consumer Electronics
(ICCE07), Jan. 2007.

[49] D. Comaniciu and D. Meer, “Robust analysis of feature spaces: Color image
segmentation,” Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR97), pp. 750–755, 1997.

116   Image Processing for Embedded Devices Bruna and Naccari 

 

 



Noise Reduction

A. Bosco
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

R. Rizzo
Image Processing Lab, University of Catania, Italy.

Abstract: Among the many factors contributing to image quality degradation, noise is one of the
most recurrent and difficult elements to deal with. Smart filters capable to remove noise without
affecting the tiny details of a digital image are of primary importance to produce pleasant pictures.
Different noise sources, having different characteristics, are superimposed to the image signal;
consequently, the design of effective filters capable to discriminate and remove unwanted signal
from useful data, requires analysis and understanding of the whole image formation process. This
Chapter is devoted to the analysis of the main noise sources that contaminate the ideal image
signal, providing an overview of noise estimation and filtering techniques.

6.1 Introduction
Noise signal has a negative impact on the image processing pipeline as a whole and low-
ers the perceived quality of the acquired data. Hence, a smart filter enabling successful
noise reduction without affecting the tiny details of an image is of paramount importance
in an imaging system. Camera phones and low-end digital still cameras are particularly
subject to noise degradation, especially when images are acquired in low light. In case of
low light environments, such as indoor scenes, the image signal must be amplified so as
to obtain an acceptable picture. The possible absence of a flashgun, typically in camera
phones, further worsens the shooting conditions. Unfortunately, when boosting an already
degraded signal, noise is also amplified (see Chapter 3). Noise reduction must be adaptive
with respect to the noise and signal levels, such that the filter strength can be modulated
according to the amount of noise and texture information present in the image. Noise
contaminating raw images is usually assumed additive white and Gaussian (AWGN), be-
cause of the simple mathematical tractability of the Gaussian distribution (6.4.4). Noise
intensity is provided by the standard deviation σ of the underlying distribution [1]; many
filters rely on σ to adaptively change their smoothing effects (see Section 6.9.3).

The noise levels change depending on the particular image pipeline stage in which
they are measured; in fact post-processing algorithms introduce correlation in data and
noise, amplifying or reducing the noise intensities.

Fig.(6.1) shows a typical image processing pipeline and the most important noise
sources contaminating images; the colors of the blocks denote the capability of each
algorithm to increase (red) or reduce (blue) the noise amount of the image.

This Chapter provides an excursus on the principal noise sources and analyzes in
detail the most important techniques of noise estimation and filtering.

The Chapter is organized as follows. In Section 6.2 some noise metrics are reported.
Section 6.3 describes the intrinsic noise generated by the light itself (Photon Shot Noise).

S. Battiato, A.R. Bruna, G. Messina and G. Puglisi (Eds)
All right reserved - c© 2010 Bentham Science Publisher Ltd.

 Image Processing for Embedded Devices, 2010, 117-148 117 

CHAPTER 6 
  



Scene

Fixed�Pattern�Noise,�
Shot�Noise,�Dark�

Current�Noise,�Readout�
Noise,�Reset�Noise,�

LensLensLens Image�
Sensor

Scene

Antivignette�+�
White�
Balance

Quantization�Noise

++

Denoising

Demosaicing

Post�
Processing

Gamma�
Correction

Compression

Figure 6.1 : Image processing pipeline and noise sources. Pipeline stages in red indicate
the algorithms contributing to increase image noise. Blue stages represent the algorithms
that cause a reduction of noise levels.
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Section 6.4 defines image defects and the Gaussian noise model introducing the main
noise sources at sensor level. Section 6.5 illustrates the image pipeline stages in which
noise has a key impact on image quality, while Sections 6.6 and 6.7 describe luminance
and chrominance noise respectively. Sections 6.8 and 6.9 report the main techniques used
to estimate and filter image noise. Other references on image noise perception can be
found in Chapter 12 and in [1–3].

6.2 Noise metrics
Two important measures dealing with noise are SNR (Signal to Noise Ratio) and Dynamic
Range, useful to numerically define image quality and sensor acquired luminance range
respectively.

6.2.1 Signal to Noise Ratio
SNR is usually adopted as a simple reference measure of image quality. It is computed as
the ratio between the signal and the underlying noise and is expressed in decibel [1].

SNR(S) = 20log10

(
S

σN

)
(dB) (6.1)

All quantities are measured in electrons. The term S represents the signal level while
σN represents the noise standard deviation. More specifically σN is defined as sum of
different kinds of noise: σN = σS + σR +σDSNU +σPRNU where σS, σR, σDSNU , σPRNU
are shot noise, read noise, dark signal non uniformity and photon response non uniformity
respectively. These types of noise will be introduced in Sections 6.3 and 6.4. After
acquisition and digital conversion, the image is coded into L levels, where L depends on
the bit depth of the Analog to Digital (A/D) conversion process. Hence, the SNR of an
image I(x,y) in this case is defined as:

SNR(I) = 20log10

(
E (I)
σ (I)

)
(dB) (6.2)

where E(I) and σ (I) are the average value and the standard deviation of the image I
respectively. The higher the SNR, the better the image.

6.2.2 Dynamic Range
The sensor dynamic range DR is expressed in decibels and is defined as ( [1]):

DR = 20log10

(
Smax

Smin

)
(dB) (6.3)

where Smax represents the photodiode charge capacity (full well) in electrons and Smin
represents the minimum temporal noise value (noise floor) at zero exposure. The well
capacity decreases as pixel size shrinks, reducing the dynamic range. However, with
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improvements in sensor design it is possible to reduce the noise levels associated with
small pixels, allowing increasing the dynamic range.

6.3 Photon Shot Noise
Image sensors record light by capturing photons into the photodiodes, eventually convert-
ing them into numbers. During the integration time, the arrival rate of photons at each
photosite is not constant; rather, there is an intrinsic uncertainty caused by the oscillations
of the number of photons that reach the imager. Consequently, even in the ideal case
of constant and uniform light intensity, each photosite can receive a different number of
photons; yet, on average, the number of photons per pixel is the same. These oscillations
can be modeled by Poisson distribution.

6.3.1 Poisson Distribution
The Poisson distribution approximates the probability of a number of independent events
occurring in a given timeframe at a known average rate, and has only one parameter λ ,
which represents both its mean and variance. A random variable X taking values 0,1, . . .
is Poisson distributed if:

P{X=m}=
e−λ ·λ m

m!
, m=0, 1, . . . λ> 0 (6.4)

Photons hit independently each photosite at a certain average rate; it follows that
Photon Shot Noise (PSN) has Poisson statistics. The variance of PSN is given by the
square root of the number of photons hitting the sensor in the integration time [4]:

σPSN = λPSN =
√

N N= number of photons in the integration time (6.5)

Therefore, oscillations in the photons arrival rate are of the order
√

N. According to
(6.5) it is evident that PSN increases as the amount of light (i.e., photons N) augments.
Despite this, a larger number of photons also yields higher SNR, consequently PSN can
be regarded as a problem only in case of low light. If the signal is strong, not only SNR is
higher, minimizing the impact of PSN, but also Poisson distribution can be approximated
by the Gaussian distribution allowing simpler denoising treatment (see Fig.(6.2)).

PSN is intrinsic in the quantity (i.e., light) recorded by the sensor and cannot be com-
pletely eliminated. However it can be reduced if larger pixels are adopted, maximizing
the number of integrated photons even in very low light conditions. This, of course, in-
creases the size and cost of the sensor, hence suitable trade-offs have to be found. In fact,
given two sensors having the same resolution but pixels of the different sizes, the sen-
sor with larger pixels is, in principle, capable of collecting more photons yielding higher
SNR. We can conclude that the impact of PSN is greater with: fast shutter speeds, low
light condition.
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Figure 6.2 : Poisson distribution approaches Gaussian distribution as the mean increases.
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6.4 Noise Types and Models
There is not just one single noise source, rather, many factors contribute to signal degra-
dation. Each noise source injects extra-information in the ideal noise-free image signal;
eventually unpleasant images are generated if noise is not properly treated.

6.4.1 Fixed Pattern Noise and Temporal Noise
Noise in a digital raw image can be classified into two main categories:

1. Fixed Pattern Noise (FPN);

2. Temporal (Random) Noise;

In FPN, the term fixed refers to the fact that this noise has a pattern which is invariant
with respect to time. FPN has two main components, one at dark and one under illu-
mination. The dark component is known as dark-FPN and it is present even in absence
of illumination. The FPN under illumination is called PRNU (Pixel Response Non Uni-
formity) and is caused by different sensitivity of the pixels to light. If the image sensor
contains column amplifiers dark-FPN may appear as vertical stripes in the image (column
-FPN) that are very annoying and easily detected by the human eye. A technique for
removing column-FPN is described in Section 6.9.1.

Temporal (random) noise, on the other hand, fluctuates over time, hence it appears
different in intensity and spatial position in different frames. Temporal noise is the sum
of different noise sources generated on the imager during the acquisition process (e.g.,
photon shot noise). Other sources of temporal noise are:

• Dark current noise: represents the temperature dependent noise generated on the
surface of the image sensor. Noise is introduced by the sum of electrons freed by
the thermal energy plus electrons generated by the photons hitting the imager.

• Readout noise: is the electronic noise generated during the sensor readout process.

• Reset noise: is generated by residual electrons left in sensors capacitor after the
reset operation, which is performed before a new scene acquisition occurs.

• Quantization noise: is due to conversion of photons into a digital number per-
formed by an A/D converter. The errors introduced in the conversion of an analog
signal to a set of discrete digital values are known as quantization errors. In par-
ticular, quantization noise significantly affects image quality when the bit-depth of
the digital conversion process is small.

6.4.2 Additive Noise Model
Consider an ideal image I with size M1 ×M2, denoted as I = [i(x,y)]M1×M2

, such that
i(x,y) ∈ {0, . . . ,L−1}, 0 ≤ x ≤ M1−1, 0 ≤ y ≤ M2−1. Ideal image I contains no noise,
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Figure 6.3 : Additive noise model. The ideal image signal is contaminated by a noisy
signal η(x,y) whose intensities are drawn from an underlying noise distribution Zd .

every pixel being the exact representation of the light intensity perfectly recorded and
converted by the sensor. In the additive noise model, each pixel of the ideal image is
contaminated by a random value drawn from a certain underlying noise distribution Zd;
this random quantity adds to the original ideal signal, generating the noisy observed image
N(x,y):

N(x,y) = I(x,y)+η(x,y) (6.6)

The term η(x,y) which is added to the ideal value I(x,y) is generated by the con-
tribution of many overlapping noise sources. Because of the central limit theorem, a
common assumption is to model the contribution of all noise sources as zero mean Addi-
tive White Gaussian Noise (AWGN). Eventually, the noisy term N(x,y) is then observed
and recorded.

6.4.3 Central Limit Theorem
Before proceeding,we recall the Central Limit Theorem (CLT). Consider n independent
and identically distributed (i.i.d.) random variables X1,X2, . . . ,Xn, each one having a cer-
tain mean μ and variance σ2 > 0. Let Sn be the sum of each Xi, i = 1, . . . ,n:

Sn =
n

∑
i=1

Xi (6.7)

Consider the new variable:
Zn =

Sn −nμ
σ
√

n
(6.8)

The CLT states that the distribution of the sample average of the random variables
converges to the normal distribution with mean μ and variance σ2/n even if the Xi have

Noise Reduction Image Processing for Embedded Devices   123 

   



different distributions. In other words the distribution of Zn converges in distribution to
the normal standard distribution N (0,1) as the number of added i.i.d. Xi approaches
infinity:

Zd
D→N (0,1) (6.9)

6.4.4 Additive White Gaussian Noise Model

AWGN is the most widely adopted noise model; this assumption arises from the central
limit theorem: all noise sources overlap, finally producing a zero mean Gaussian dis-
tributed noise. More specifically, the theorem states that the sum of a large number of
independent random variables is Gaussian distributed. In order to correctly apply the
CLT, the following properties must be satisfied:

• Each single random variable must be independent;

• Each term in the sum must be small compared to the overall sum;

• There must be a large number of random variables contributing to the sum.

These assumptions fit well with the fact that not all noise sources have Gaussian dis-
tribution. Probability Density Function (PDF) of the Gaussian distribution is shown in
Fig.(6.4) and is modeled as:

f (x,μ,σ) =
1√

2πσ
e−

1
2(

x−μ
σ )2

(6.10)

where x is the signal intensity, μ and σ are respectively the mean and standard devia-
tion of the signal x (see Fig.(6.4)) [1].

Some key properties of the normal distribution often used in noise reduction algo-
rithms are given below. The probability that a randomly selected value of a variable x
falls between the values a and b is defined as:

P(a ≤ x ≤ b) =
∫ b

a
f (x)dx (6.11)

Let z be the z-score defined as:

z =
(x−μ)

σ
(6.12)

The Chebychev theorem states that for any population or sample, the proportion of
observations, whose z-score has an absolute value less than or equal to k, is no less than
(1− (1/k2)):

P(x ≤ k) ≥ 1− 1
k2 (6.13)
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Figure 6.4 : Probability density function of the Gaussian (normal) distribution.

In case of Gaussian distribution, the Chebychev theorem can be further refined. In
particular the following properties hold:

P(−1 ≤ z ≤ 1) =
∫ 1
−1 f (z)dz = 68.27%

P(−2 ≤ z ≤ 2) =
∫ 2
−2 f (z)dz = 95.45%

P(−3 ≤ z ≤ 3) =
∫ 3
−3 f (z)dz = 99.73%

(6.14)

In other words:

• 68% of the samples fall within -1 and +1 standard deviations from the mean;

• 95% of the samples fall within -2 and +2 standard deviations from the mean;

• 99% of the samples fall within -3 and +3 standard deviations from the mean.

This implies that there is a small probability that a normally distributed variable falls
more than 2 times standard deviations away from its mean.

This noise model is representative of the small oscillations that are observed in the
pixels values. It must be observed however, that for high levels of noise, the Gaussian
distribution bell becomes significantly wide, eventually degenerating to a fat tailed distri-
bution which causes increase of color noise and leaky pixels.

6.4.5 Impulse Noise Model
Image sensors are composed of millions of photodiodes collecting photons. Faulty ele-
ments in the sensor array may occur, generating pixels that do not record correct informa-
tion. The single isolated defective pixels located in random spatial positions of the imager

Noise Reduction Image Processing for Embedded Devices   125 



(a) Clean Image (b) Fixed-Valued impulse noise

Figure 6.5 : Impulse noise.

are referred to as impulse noise. The defective nature of a pixel can be classified into two
main classes: fixed-valued and random-valued impulse noise. The following definition
shows the fixed-valued impulse noise pdf :

f (x) =

⎧⎨
⎩

fa i f x = a
fb i f x = b
0 otherwise

(6.15)

For a 8-bit image, a = 0 yields black pixels in the image (dead pixels), and b = 255,
produces clipped values (spikes). Pixels affected by fixed-valued impulse noise always ap-
pear defective unless they are masked by texture, and they can be corrected using a defect
map, which stores the position of the faulty elements. The correction stage uses informa-
tion from the neighboring pixels. Fig.(6.5) shows an image contaminated by fixed-valued
impulse noise.

Leaky pixels do not respond well to light, rather, their response is uncertain, causing
random-valued impulse noise (i.e., impulse noise with variable amplitude). The behavior
of leaky pixels is not constant and varies according to external factors such as temperature;
this extra uncertainty makes leaky pixels position almost unpredictable. For an image
contaminated with impulse noise, the impulse noise ratio Q can be defined as:

Q = Number of impulse defective pixels / Total number of pixels (6.16)

The position of the defects and their amplitude are two independent quantities, hence,
the map of defects D is defined as the point by point multiplication between DPOS and
DAMP [5]:

D = DPOS·DAMP (6.17)

where:
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• DPOS is M×N binary matrix mapping the positions of the impulse noise;

• DAMP is M×N representing the amplitudes of the impulse noise at each pixel posi-
tion;

The following probabilities can be then defined:

P{DPOS (x,y) = 1} = n
P{DPOS (x,y) = 0} = 1−n (6.18)

where x = 1, . . . , M, y = 1, . . . ,N and 0 ≤ n ≤ 1. Binary distribution (6.18) indi-
cates that position (x,y) is faulty with probability n and correct with probability 1−n.
The correction of impulse can incur into three classes of errors:

• Type I: this type of errors simply refer to the case in which a defective element is
not detected (false negative); this error causes a visible, not corrected, defect in the
final image unless it is masked by texture.

• Type II: a pixel not affected by impulse noise is erroneously classified as defective
and corrected (false positive).Type II errors occurring in textured areas of the im-
age cause loss of detail because important information related to sharpness is lost
after correction. False positives in homogeneous areas are not a problem because
overcorrecting a homogeneous area does not produce visible artifacts.

• Type III: a defective pixel is correctly classified and corrected, nonetheless its cor-
rection augments defectivity (overcorrection problem). This category of errors is
more subtle and refers to the case in which the correction of the defect produces a
new value which is more defective and visible than the previous one.

As the pixel size decreases and the operating conditions of the imager become critical
(e.g., high temperature, low light, etc.) the probability of occurrence of adjacent defec-
tive pixels augments. For example, adjacent leaky pixels, in certain conditions behave
as couplets of defective pixels, particularly visible and annoying in uniform and dark
backgrounds (heavy tailed noise). Couplets are difficult to remove because two adjacent
defective elements may be considered as part of an edge and not corrected. To cope with
this problem, ad-hoc defect correction algorithms must be used or properly tuned defect
maps have to be built [6]. Fig.(6.6) shows the defective and filtered version of a Bayer
image in false color.

Strong defect correction, such as heavy median filtering, can cause significant resolu-
tion loss generating unpleasant blurred images.

6.4.6 Heavy Tailed Noise
In some cases the hypotheses of the central limit theorem are not completely satisfied:
the sum of the underlying random variables may include not independent addends, or the
contribution of some variables may be too large. In these cases, the simple Gaussian noise
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(a) Colorized defective Bayer image.

(b) Colorized Filtered Bayer image.

Figure 6.6 : Defective Bayer image.
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model does not fit well the actual noise distribution. In particular, although the central part
of the noise distribution fits the Gaussian model, the tails may not. More specifically, it
is frequent the case in which the noise distribution tails do not tend to zero as fast as
the Gaussian distribution. Statistical distributions exhibiting this property are known as
heavy-tailed distributions (see Fig.(6.7)). Consequently, noise modeled by heavy tailed
distributions is called heavy tailed noise. It is useful to remind some key properties that
define the shape of a distribution.

6.4.7 Shape Measures of a Distribution
There are two quantities that describe the shape of a statistical distribution:

• Skewness: indicates the degree of distortion (asymmetry) along the horizontal axis
and around the mean of the distribution.

• Kurtosis: indicates the degree of peakness of the distribution.

To define the above quantities, the definition of central moments of a distribution must
be provided. The n-th central moment Cn of a random variable X is defined as:

Cn = E(X −E (X))n (6.19)

where E (·) is the expectation operator. According to (6.19) the first three central moments
are computed as follow:

• n=0 : C0 = E(X −E (X))0 = 1;

• n=1 : C1 = E(X −E (X))1 = 0;

• n=2 : C2 = E(X −E (X))2 = σ2;

The next central moments (n = 3,4) are useful to measure distribution shape:

• n=3 : C3 defines the skewness of the distribution;

• n=4 : C4 defines the kurtosis of the distribution.

A distribution having skewness close to zero is symmetric around its mean (Gaussian
distribution). If skewness is greater than zero, the distribution exhibits a right tail, whereas
negative skewness indicates a left tail. Depending on the kurtosis value, statistical distri-
butions can be classified in the following categories:

• leptokurtic (highly peaked distribution);

• mesokurtic (normally peaked distribution);

• platycurtic (flat peaked distribution).
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Figure 6.7 : Normal distribution (outlined) and Fat Tailed Distribution.

Leptokurtic distributions have a higher and sharper peak and present fatter tails. In
case of low light, the shape of the Gaussian bell becomes particularly wide, eventually
degenerating to a fat tailed distribution. In case of noise with an underlying fat tailed
distribution there is a high probability of relatively high deviations from the correct pixel
value.

Fat tailed noise mainly appears in low light images and depends on gains and temper-
ature. It manifests as high amplitude random impulse noise in non predictable locations
at ”shot time” (i.e., when the image is taken). An algorithm capable to deal with unpre-
dictable defects must be devised (on the fly defect-correction); simple defect-maps cannot
be effectively used because the fat defects position is not predictable.

6.5 Noise in Image Pipeline

Despite the efforts in reducing noise introduced during the acquisition process, the resid-
ual unfiltered noise may be amplified in the subsequent image pipeline processing steps.
This is a problem especially in low light conditions because analog and digital gains are
set high in order to produce an acceptable picture. This Section describes the main noise
amplification effects of a typical image generation pipeline.

Noise reduction can take place in different stages of the image processing pipeline. In
order to keep noise levels low, it may be necessary to perform more than a single noise
reduction stage.

Unfiltered sensor noise can also introduce artifacts in colors that are difficult to recover
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Figure 6.8 : Image pipeline.

after demosaicing, because color interpolation mixes noises of different color channels,
increasing signal and noise correlation.

Noise can change significantly its intensity and statistics in the different stages of
the pipeline. Before the application of the pipeline algorithms, the acquired raw image
contains noise which is the juxtaposition of many different sources, overlapping and con-
taminating the ideal signal. The amplification necessary to produce a correctly exposed
image, impacts the amount of noise in the acquired picture. Temporal random noise de-
scribes the 2D spatial distribution inside the image changes from frame to frame.

In addition, as shown in Fig.(6.1), each block affects noise statistics [7]. Algorithms
in Fig.(6.8) and their side-effects on the noise distribution are described in detail in the
following subsections.

6.5.1 White Balance effects
The first block having a high impact in noise amplification is the White Balance (WB). The
WB algorithm typically applies three different global gains (one for each CFA channel)
in order to compensate the amounts of red, green and blue such that the neutral colors are
represented correctly (see Chapter 5). Let IR, IG, IB be the red, green and blue pixels of
the CFA image respectively. Let gWB

R , gWB
G , gWB

B be the gains applied to each CFA color
channel according to:

IWB
R = gWB

R IR
IWB
G = gWB

G IG
IWB
B = gWB

B IB

(6.20)

Hence, the noise level (NL) in each CFA plane is modified in the following ways:

NL
(
IWB
R

)
= gWB

R NL(IR)
NL

(
IWB
G

)
= gWB

G NL(IG)
NL

(
IWB
B

)
= gWB

B NL(IB)
(6.21)

6.5.2 Demosaicing Effects
The demosaicing process allows recovering the color image from the interspersed sam-
ples of the Bayer pattern. The algorithm chosen to reconstruct the color image impacts the
noise levels because of changes in the spatial correlation of data (see Chapter 7 for more
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details). To show the effects of demosaicing on noise level a simple algorithm which re-
covers the color component at location (x,y) by averaging the available color components
in the neighborhood is employed. For example, if the current (x,y) is the site of a green
sample, the missing red and blue components are recovered by using:

I∗R (x,y) = IWB
R (x−1,y)+ IWB

R (x+1,y)
2

I∗B (x,y) = IWB
B (x−1,y)+ IWB

B (x+1,y)
2

(6.22)

The NL related to the red and blue components interpolated at pixel (x,y) are defined as
( [7]):

NL(I∗R (x,y)) ∼= NL(IWB
R (x−1,y))

2

NL(I∗B (x,y)) ∼= NL(IWB
B (x−1,y))

2

(6.23)

NL is scaled by a factor of two because of the average operation on data. The spatial
correlation of noise also increases.

6.5.3 Color Correction Effects

Color correction is necessary because the response of the color filters placed on top of the
imager do not match the one of the human eye; consequently, the RGB values must be
corrected using a proper 3×3 matrix that adjusts the values accordingly (see Chapter 5).
This multiplication changes the pixel values but, meanwhile, increases noise and reduces
the SNR, especially in the blue channel:⎡
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(NL) for each color channel change in the following way ( [7]):
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)
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(6.25)

6.5.4 Sharpening, Gamma Correction and Compression Effects

The demosaicing process reconstructs the full RGB color image starting from the Bayer
samples; this process is essentially a low-pass operation, hence the output image is weak
in terms of sharpness and it looks blurred; therefore a sharpening algorithm is mandatory
in order to obtain an acceptable image. Subsequently a gamma correction algorithm is
also applied, to align the linear response to light intensity of the imager to the nonlinear
response of the human visual system.
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Sharpening and gamma correction algorithms improve image quality, but increase
noise as well. The sharpening algorithm amplifies the high frequencies, consequently
increasing the image noise. Gamma correction modifies luminance values to enhance
contrast in the dark regions; due to its nonlinearity, it makes the noise distribution for
each signal level even more complex to describe. Compression is used to reduce the size
of image files. There are two types of compression: lossless, where the amount of image
data is reduced without loss of information, and lossy (e.g., JPEG) where image file is
reduced allowing the lost of a part of data.

JPEG converts the RGB image in the YCbCr color space; the luminance plane (Y)
is used for recognizing structures and details while the chrominance planes (CbCr) are
subsampled without significant loss of image information for the observer. The Y plane
is divided in 8×8 blocks that are compressed separately and transformed in the frequency
domain using DCT (Discrete Cosine Transform). DCT coefficients are then quantized
using a quantization table. Compression rate depends on the used quantization table;
the higher the compression rate the lower the image quality, due to presence of artifacts.
Lossy image compression is similar to a noise reduction algorithm, that maintains the
main image structures and suppresses fine textures and details. Anyway, artifacts intro-
duced by compression reduce global image quality.

6.5.5 Noise Reduction Block Position
According to the previous considerations about the image pipeline, the position of the
noise reduction stage strongly affects the quality of the final image. Basically, in order to
avoid false colors and increment of noise spatial correlation, it is important to implement
noise reduction before demosaicing. Nonetheless, as discussed above, not all noise can
be removed before (or jointly to [8]) demosaicing; the residual noise is further amplified
by the color correction and sharpening algorithms, hence a new application of noise re-
duction is generally required at the end of the pipeline. Fig.(6.9) shows a possible image
processing pipeline with two noise reduction stages. The first denoising stage is applied
in the CFA domain, before demosaicing; the second noise filtering stage works in the
luminance domain and is positioned at the end of pipeline before compression.

6.6 Luminance Noise
Luminance noise appears as neutral grain in the final RGB image. If not excessive, the
image may even benefit from this noise because it contributes to the overall sense of
sharpness, avoiding cartoon-like looking pictures. In other cases, especially when pixel
size is very small, high levels of noise are present, even in good light conditions; residual
luminance noise at the end of the pipeline cannot be left untreated because it is particularly
annoying especially in homogeneous areas where the eye easily detects it.

In the RGB domain, luminance information is interspersed in the red, green and blue
channels; in order to separate luminance from chrominance information, a conversion to
the YCbCr color space is needed. Other color spaces separating luminance from chromi-
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Figure 6.9 : Noise reduction blocks in Image pipeline.

nance exist (e.g., L*a*b*); despite this, YCbCr conversion comes for free because it
is already implemented inside the JPEG engine. The luminance channel is given by a
weighted average of the RGB values at any given pixel. Luminance is defined as (ITU-R
BT.709):

Y = 0.2125∗R+0.7154∗G+0.0721∗B (6.26)

In contrast with raw CFA in which noise has a specific characterization curves, in YCbCr
noise depends also on how well the algorithms in the pipeline deal with corrupted sig-
nals. Typically, a luminance filter can be placed at the end of the pipeline, before the
compression step, in order to reduce the possible excessive residual noise in the Y plane
(Fig.(6.9)). Fig.(6.10) shows a noisy flat area and corresponding denoised images with
and without the luminance noise filtering.

6.7 Chrominance Noise
Differently from luminance noise which is neutral and visible as brightness variations
from pixel to pixel, chrominance noise is a low frequency distortion appearing as large
colored blobs in the final image. These blobs are usually reddish or bluish and appear
more visible especially in dark regions of low quality images (i.e., acquired in low light
or underexposed). A chroma noise example is show in Fig.(6.11).

The low frequency nature of chroma noise does not allow efficient filtering under
the assumption of the Gaussian noise model. Frequencies of chroma noise are very low,
producing large color blobs, hence simple weighted averages do not reduce color noise
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(a) No noise treatment. (b) CFA noise treatment without final lu-
minance noise filter.

(c) CFA noise treatment + residual noise Y
filter.

Figure 6.10 : Denoising on CFA and on Luminance plane.
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B1

B3

B2

Figure 6.11 : In case of very high noise, colored blobs appear. Colored patches are
visible in areas that should appear as uniformly dark and neutral. In the figure, three
blobs B1,B2,B3 are highlighted. Their extension can be of several pixels.

effectively. Ad-hoc processing must be performed in order to reduce this noise effec-
tively. Due to the large size of the color blobs, large filter masks must be used; typically,
undersampling and large masks are used to create very large virtual filter masks.

6.8 Noise Estimation

As discussed in Section 6.4, the zero mean AWGN noise model requires the estimation of
the standard deviation of the underlying Gaussian noise distribution. Pixels deviate from
their correct value by some value which is drawn from a Gaussian distribution; usually
pixel fluctuations are small, but greater fluctuations are also possible. Nonetheless, in
99% of the cases, the deviations do not exceed 3 times sigma in absolute value. Large
noise amplitudes generated by the distribution tails are possible; in this case the pixel of
interest might appear as a spike or dead element. The knowledge of a good σ estimation
allows filtering the image data properly, significantly reducing the unpleasant effects of
Gaussian noise. Furthermore, σ can also be a reference value for detecting outliers.

Olsen [9] analyzed six methods for noise standard estimation and showed that the best
was the average method, which is also the simplest. This method consists of filtering the
data I with the average filter (a simple box function) and subtracting the filtered image
from I. Then a measure of the noise at each pixel is computed. To avoid contribution of
image edges to the estimate, the noise measure is rejected if the magnitude of the intensity
gradient is greater than a fixed threshold, T .
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Estimation of noise standard deviation is based on the following general ideas:

• Locate homogeneous areas in the image, because in flat areas pixel fluctuations are
supposed to be caused exclusively by random noise.

• Compute the local variance in the detected flat areas.

• Repeat the previous two steps until the whole image has been processed.

• Estimate the signal variance using the accumulated noise samples.

Another alternative solution consists in filtering the noisy image to suppress image struc-
ture and then estimate the noise level on the filtered data.

6.8.1 Fast Noise Estimation
A rough approximation of the noise level in an image can be obtained by exploiting the
statistical properties of the Gaussian noise distribution (6.14). It is reasonable to suppose
that the image cannot contain an arbitrary high noise level [6]; hence we initially start
with the assumption that the maximum noise level is σmax; this value is obtained using a
tuning phase in which the behavior of the image sensor is characterized under different
illumination conditions.

Assuming a 3x3 filter support, the absolute differences δ0,δ1, . . . ,δ7 between the cen-
tral pixel Pc and its neighborhood are computed:

δi = |Pc −Pi| i = 0, . . . ,7 (6.27)

If δi ∈ [0,σmax], i = 0, . . . ,7 then the assumption of having localized a homogeneous
area can be made. The idea is to build a noise histogram Ψ that accumulates the col-
lected noise samples in its bins. Let γ j be the value of the j-th absolute difference
δ j, j ∈ [0, . . . ,7] when δi ∈ [0,σmax], i = 0, . . . ,7 ; in this case the bin γi in Ψ is incre-
mented:

Ψ(γ j) = Ψ(γ j)+1 (6.28)

After processing the entire frame, the absolute differences accumulated in the his-
togram will be Gaussian-like shaped. Because of the absolute values, only the positive
side of the x-axis is filled; this is not a problem because the normal distribution is sym-
metric around its mean value, which is zero in our case. To determine the noise standard
deviation we consider the property of the Gaussian distribution stating that 68% of its
samples fall in the interval [μ −σ ,μ + σ ]. The histogram of the absolute differences is
integrated until the 68% of the total samples has been accumulated. As soon as the his-
togram integrations stops, the value on the x-axis allowing reaching the 68% of the total
samples represents the estimated noise standard deviation (Fig.(6.12)):

σest = {max k|
k

∑
i=1

Ψ(i) ≤ 	0.68 ·Σsamples
} (6.29)
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(a) (b)

(c)

Figure 6.12 : Noise level estimation using noise histogram Gaussian-like distributed.

This solution is strongly based on the value originally chosen for σmax. This number
has to be carefully generated by performing a tuning phase which consists in testing
the image sensor under different light conditions and determining the typical worst case
noise situations. These noise levels will set an upper bound for 3σmax. Nonetheless,
the gathered sample of the noise population could be contaminated by the real signal. A
possible solution that can minimize the bias problem is to allow σmax to change over time;
if σmax is initially overestimated, then σmax can be decreased for the next iteration. This
allows progressively reducing the sample bias and converging to the optimal estimation.
The method can be further refined using a more sophisticated texture detector, like the
one described in [10].

Though the estimation is not perfect and may be biased, it is anyway an approxima-
tion, indicating the overall noise level. On a CFA image this method will generate a single
σ value for each color channel.
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6.9 Noise Filtering
The noise filtering problem can be described as the process of effectively removing the
unwanted noisy component from the acquired signal, restoring the original ideal data,
without sacrificing the image sharpness and features (i.e., color component distances,
edges, sharpness, etc.). The following sections describe some techniques for the removal
of the fixed pattern noise [11], random noise [11, 12] and temporal noise for video acqui-
sitions [13].

6.9.1 Column-FPN Filtering
The column-Fixed Pattern Noise (FPN) is caused by column amplifiers, and appears as
vertical stripes in the image (see Section 6.4). Since FPN is equal in all acquisitions, for
its effective cancellation, it is necessary to estimate its signature. Once the signature is
learned, it can be subtracted from the image data. FPN estimation can be performed using
supplementary data provided by the image sensor. As Fig.(6.13) depicts, a series of black
and dark lines are placed at the top of the imager, that are not shown in the final color
pictures. Black lines have zero integration time while dark lines have the same exposure
time as the image lines but they are shielded from the incident light. These considerations
imply that:

• black lines contain very little noise (specifically, FPN noise only);

• dark lines accumulate almost the same temporal noise as the image, because they
have the same integration time of the image lines.

The FPN cancellation is achieved by continuously averaging the black sampled data,
according to the following equation:

FPN Est = FPN Est(FPN Est/LeakC)+(FPN CurSample/LeakC) (6.30)

where:

• LeakC: is a constant to weight the previous estimation.

• FPN Est: is the estimation of the FPN signature.

• FPN CurSample: is the FPN signature, extracted from the current frame.

Denoting with nb the number of black lines and with W the image width, the cur-
rent estimation, FPN CurSample, for the FPN of image I is obtained by averaging each
column j of the black lines:

Mj = ∑i=0,1,...,nb I(i, j)
nb j = 1, . . . ,W (6.31)

FPN Est is initialized to zero and is updated by means of equation (6.30), each time
a new frame arrives. The first estimation, computed on the first frame, is merely a coarse
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Figure 6.13 : Black lines are used for FPN estimation, Dark lines for random noise
estimation.

approximation of the real FPN signature. After some iterations the estimation converges
towards the correct signature that must be row-wise subtracted from the image data in
order to get rid of the FPN. The LeakC value defines how much weight is attributed to the
previous estimations; by changing this value, the speed of convergence can be modulated.

Also, the number of black lines used to learn the signature is a key element of the
algorithm. If a low number of black lines is used, the estimation would be not reliable, as
noise would generate uncertain approximations. On the other hand, using more lines than
necessary is a useless waste of resources, both on the sensor and from a computational
point of view. Thus, a trade-off between the number of black lines and the leak factor
value must be found.

6.9.2 Spatial Filtering

Spatial filters are based on low pass filtering of neighboring pixels under the assumption
that the noisy part of the signal is located in its high frequencies. Spatial filters can be
partitioned into two main classes: linear and non-linear filters. Linear filters, such as the
mean filter, are weak in terms of image details preservation and cannot be successfully
adopted for removing noise without blurring the image. Other simple non-linear filters
such as the median filter are also weak in terms of detail preservation, basically because
this filter applies the same processing without explicitly identifying noise. Nonetheless a
median filter has good response in cases in which the noise distribution has long tails.

A vast variety of spatial filters exist and covering them is out of the scope of this
chapter [14]. Rather, in the following, two widely used filtering methods known as sigma
filter and bilateral filter are analyzed.
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6.9.3 Sigma-Filter

If a reliable noise estimator is available, the Sigma-Filter [6] represents a fast solution for
reducing noise. The filtering process is based on the assumption that the observed pixel
value N(x,y) is a good estimate of the local signal mean. The observed pixel value N (x,y)
can be expressed as the sum of its representative mean η plus a Gaussian noise term Γ:

N (x,y) = η(x,y)+Γ(x,y) (6.32)

We then consider a value δ = 3σ and consider all the pixels in the range delimited by the
central pixel value ±δ . Under the assumption of zero mean AWGN, this range includes
˜99% of the distribution from the same class as the central pixel. Let M be a m1 ×m2
filter mask and Pc the value of its central pixel. The final output is a weighted average of
the pixels having value close to one of the mask central pixel. Weights decrease as the
distance in intensity between the central pixel and the neighborhood augments. Under
the assumption of Gaussian noise model, the Sigma Filter averages all the pixels whose
values fall in the range [Pc −3σ ,Pc +3σ ]. In particular, pixels whose distance falls in
the range [Pc −σ ,Pc +σ ] receive maximum weight Wmax. Pixels whose value falls in
the range [(Pc −σ)−σ ,(Pc +σ)+σ ] are weighted with medium weight Wmid . Finally,
pixels whose intensity falls in the range[(Pc −2σ)−σ ,(Pc +2σ)+σ ] are weighted with
minimum weight Wmin. Pixels outside of the range [(Pc −3σ),(Pc +3σ)] are considered
outliers having zero weight in the weighted average. Clearly, a reliable noise estimate is
necessary, otherwise blurring or lack of noise reduction effectiveness can occur, depend-
ing on sigma over- or under estimation respectively.

The final weighted average Pf can be expressed as the sum of the mask pixels multi-
plied by their respective weights and divided by the sum of the weights:

Pf =
∑i≤(m1×m2)−1

i=0 Wi ·Pi

∑i≤(m1×m2)−1
i=0 Wi

(6.33)

The selection of the range [(Pc −3σ),(Pc +3σ)] excludes shot noise pixels and pixels
outside a local edge, maintaining sharp edges and allowing effective noise suppression in
homogeneous areas. On the other hand, the preservation of sharp edges and strong fil-
tering strength in flat areas also becomes a weakness of this filter. The main problem is
that the Sigma-Filter has a strong inclusion/exclusion rule in the average process; this, if
not well controlled, adds a cartoon-like appearance to the filtered image because transi-
tions become too abrupt [15]. In fact, if a strong edge separating two regions is present
and if the grey level difference between both regions is larger than a threshold, the al-
gorithm computes averages of pixels belonging to the same region as the reference pixel
creating artificial shocks. In conclusion, the Sigma-Filter can create large flat zones and
spurious contours inside smooth regions [15]. Not only noise must be reduced but, at the
same time, it is necessary to retain a sense of sharpness, depth and focus which manifests
through gradual and smooth edge transitions. The bilateral filter satisfies this requirement
by applying a smooth weighting scheme in both spatial and intensity domains.
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Figure 6.14 : Sigma filter.

6.9.4 Bilateral Filtering

Bilateral filtering [12, 16] can be seen as an extension of the Sigma-Filter. Again, the
noise reduction process is based on a weighted average of local samples, but in this case
the filter is driven by two different standard deviation values: the intensity related σi and
the spatial related σs. In analogy with the sigma filter, σi represents the effective noise
level which depends on the pixel intensity values. The additional spatial σs is used to
weight the pixels in the mask depending on their distance from the center of the mask.
Hence, if a low σs is used, the pixels far from the central pixel are assigned a low weight
and have less importance in the final weighted average. An example of bilateral filtering
on a 7×7 mask is shown in Figure 6.15. At a pixel location

−→
( x) the output of the filter

is given by:

I (−→x ) =
1
C ∑

y ∈N(−→x )
e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i I (−→y ) (6.34)

where N (−→x ) is a spatial neighborhood of pixel I (−→x ) and C represents the normaliza-
tion costant:

C = ∑
y ∈N(−→x )

e
−‖−→y −−→x ‖

2 σ2
s e

−|I(−→y )−I(−→x )|
2 σ2

i (6.35)
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(a) Noisy input

(b) Filter

(c) Filtered output

Figure 6.15 : Bilateral filter.
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6.9.5 Temporal Filtering

Noise types in an image sensor can be partitioned in two main classes: fixed pattern
noise and random/temporal noise. When a picture is taken, the acquired signal represents
a snapshot of the ideal signal plus noise fluctuations. Fixed pattern noise is removed
in the sensor by using ad-hoc signal processing, hence the acquired picture is basically
contaminated by random noise. This random noise is a bi-dimensional snapshot of the
temporal noise at each pixel location, that can be defined as spatial noise.

If the imager is used to acquire a bi-dimensional signal, then spatial techniques to
reduce the random noise can be applied. On the other hand, if the application requires the
acquisition of a temporal signal (i.e., video) then the application of a spatial filter will not
suffice. This is due to the fact that residual noise in each frame will be independent from
the other frames. As a result, the same pixel of adjacent frames will be perceived, again,
with small annoying fluctuations around its average (flickering). To perform effective
noise video filtering, it is necessary to stabilize the signal also in the temporal direction;
this can be implemented using a frame buffer to exploit the temporal redundancies of the
image signal.

In temporal filtering, noise reduction is performed by using information from adjacent
frames (Fig.(6.16)). To take advantage of the temporal redundancies between frames,
however, simply adding a frame buffer for storing the previous frame is not very efficient.
Clearly, motion may occur between two consecutive frames; hence, a motion estimation
algorithm should be performed in order to compensate for movement between frames.
If temporal noise reduction is performed in the loop of an MPEG encoder, the motion
estimation engine can be shared between the encoder and the filter. Filters using a mo-
tion estimator are known as motion compensated temporal filters, whereas non motion
compensated filters do not have an underlying motion estimator. It is clear that motion
compensated temporal filters are much more efficient in exploiting the spatio-temporal
redundancies.

In the simpler scheme, noise from the current frame is removed by considering also
data from the previous filtered frame, as in Fig.(6.17).

In more complex schemes, data may be provided by more than one past frames. If
video has already been acquired and noise reduction is performed offline, information
from ”future” frames can also be used.

6.10 Conclusions

This Chapter has provided the fundamentals about the main noise sources, illustrating
techniques for noise modeling, estimation and reduction. Even if very complex noise
estimation and reduction techniques exist, only fast solutions that can be realistically im-
plemented in electronic devices have been treated; these techniques represent a trade-off
between achievable image quality and computational cost. The Chapter has also illus-
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Figure 6.16 : The motion of a pixel (usually an entire block of pixels) is tracked by the
motion estimator between temporally adjacent frames. Tracking allows temporal filtering
even if the block is located in different spatial positions in the temporal sequence. Non
motion compensated temporal filters cannot take advantage of this and can only average
temporally if no apparent motion occurred between frames.
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Figure 6.17 : Scheme of a temporal filter.
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trated how noise levels change along the image processing pipeline; this theory is funda-
mental to devise an imaging pipeline that is capable to reduce noise and keep its level low
from the Bayer domain to the final color image.
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Demosaicing and Aliasing Correction

M. Guarnera, G. Messina, V. Tomaselli
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

Abstract:Acquisition of color images requires the presence of different sensors for different color
channels. Manufacturers reduce the cost and complexity by placing a color filter array (CFA)
on top of a single image sensor, which is basically a monochromatic device, to acquire color in-
formation of the true visual scene. Since each image sensing element can detect only one color
of illumination, the missing information must be filled in. The color interpolation process (also
called demosaicing) aims to reconstruct the full resolution image acquired by the sensor, by calcu-
lating the missing components. Picture quality is strictly related to the peculiarity of demosaicing
process. Due to the aliasing phenomenon, such as false colors and zipper effects, the color interpo-
lation has to guarantee the rendering of high quality pictures avoiding artifacts. In this chapter we
review some solutions devoted to demosaicing and antialiasing. Demosaicing algorithms can be
basically divided into two main categories: spatial-domain and frequency-domain. Demosaicing
solutions are not always able to completely eliminate false colors and zipper effects, thus imag-
ing pipelines often include a post-processing module, with the aim of removing residual artifacts.
Some of these techniques are also described.

7.1 Introduction
The most common arrangement of spectrally selective filters is known as Bayer pattern
[1]. Since each image sensing element can only detect one color of illumination, the
sensor provides a grayscale image, which then undergoes a color interpolation process to
reconstruct the full resolution image. The demosaicing is by far the most important step
of the whole image processing pipeline.

The simplest demosaicing method is the bilinear interpolation, a proper average on
each pixel depending on its position in the Bayer Pattern is calculated. For a pixel, we
consider its eight direct neighbors and then we determine the two missing colors of this
pixel by averaging the colors of the neighboring ones. We actually have 4 different cases
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G21 B22 G23 B2

G12 R13 G14G32 R33 G3R31

B22 G23 B24G41 B42 G43 B4B22 G23 B24G41 B42 G43 B4
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4 G16R15

G254 B26

4 G16R1534 G36R35
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GR54 G56R55

GG654 B66

Figure 7.1 : Example of Bayer pattern.

S. Battiato, A.R. Bruna, G. Messina and G. Puglisi (Eds)
All right reserved - c© 2010 Bentham Science Publisher Ltd.

 Image Processing for Embedded Devices, 2010, 149-190 149 

CHAPTER 7 
  



of averaging which correspond to the red pixel, the blue pixel, the green pixel on a red
row and the green pixel on the blue row. On each of them, the averaging will be slightly
different. Assuming the notation used in Fig.(7.1) and considering, for example, the pixels
R33, B44, G43 and G34, the bilinear interpolation proceeds as follows:

The interpolation on a red pixel (R33) produces the RGB triplet as:

Red = R33

Green =
G23 +G34 +G32 +G43

4
(7.1)

Blue =
B22 +B24 +B42 +B44

4

The interpolation on a blue pixel (B44):

Red =
R33 +R35 +R53 +R55

4

Green =
R33 +R35 +R53 +R55

4
(7.2)

Blue = B44

The interpolation on a green pixel in a blue row (G43):

Red =
R33 +R53

2
Green = G43 (7.3)

Blue =
B42 +B44

2

The interpolation on a green pixel in a red row (G34):

Red =
R33 +R35

2
Green = G34 (7.4)

Blue =
B24 +B44

2

Despite this interpolation is very simple, the results are unsatisfactory: it, as many
other traditional color interpolation methods, usually results color edge artifacts in the
image, due to the non-ideal sampling performed by the CFA. The term aliasing refers to
the distortion that occurs when a continuous time signal is sampled at a frequency lower
than twice its highest frequency. As stated in the Nyquist-Shannon sampling theorem,
an analog signal that has been sampled can be perfectly reconstructed from the samples
if the sampling rate exceeds 2B samples per second, where B is the highest frequency in
the original signal. If the highest frequency in the original signal is known, this theorem
gives the lower bound on sampling frequency assuring perfect reconstruction. On the
other hand, if the sampling frequency is known, the Nyquist-Shannon theorem gives the
upper bound to the highest frequency (called Nyquist frequency) of the signal to allow
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the perfect reconstruction. In practice, neither of these two statements can be completely
satisfied because they require band-limited original signals, which do not contain energy
at frequencies higher than a certain bandwidth B. An example of band-limited signal is
depicted in Fig.(7.2).

Figure 7.2 : Example of a bandlimited signal.

In real cases a ”time-limited” or a ”spatial-limited” signal can never be perfectly band-
limited. For this reason, an anti-aliasing filter is often placed at the input of digital signal
processing systems, to restrict the bandwidth of the signal to approximately satisfy the
sampling theorem. In case of any imaging devices an optical low pass filter smoothes
the signal in the spatial optical domain in order to reduce the resolution below the limit
of the digital sensor, which is strictly related to the pixel pitch, Xs, which is the distance
between two adjacent pixels. As explained in [2], the sampling frequency of the sensor is

f s =
1

Xs
(7.5)

To reproduce a spatial frequency there must be a pair of pixels for each cycle. One
pixel is required to respond to the black half cycle and one pixel is required to respond to
the white half cycle. In other words one pixel can only represent a half signal cycle, and
hence the highest frequency the array can reproduce is half its sampling frequency and it
is called Nyquist frequency:

fN =
1

2Xs
(7.6)

In a two dimensional array, having the same pixel pitch in both directions, Nyquist
and sampling frequencies are equal in both X and Y axes. If a Bayer color filter array is
applied on the sensor surface, the Nyquist and the sampling frequencies are different for
the G channel and the R/B channels. Red and blue channels have the same pattern, so
they have the same Nyquist frequency. In particular, let p be the monochrome pixel pitch;
as noticeable from Fig.(7.3(a)) the red and blue horizontal and vertical pixel pitch Xs is

Xs = 2p (7.7)
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Figure 7.3 : Red array line pairs at the Nyquist frequency.

and hence the Nyquist frequency for red and blue channels in both horizontal and vertical
directions is

fNRBhv
=

1
4p

(7.8)

Looking at Fig.(7.3(b)), is possible to derive the diagonal spacing between two adja-
cent red/blue pixels:

Xs =
√

2p (7.9)

the diagonal Nyquist frequency becomes:

fNRBd
=

√
2

4p
(7.10)

This means that the diagonal Nyquist frequency is larger than the horizontal/vertical one
by a

√
2 factor.

As far as the green channel is concerned, the horizontal and vertical pixel pitch equals
the monochrome pixel pitch (see Fig.(7.4)), and hence its Nyquist frequency equals that
of the monochrome array:

fNGhv
=

1
2p

(7.11)

The diagonal Nyquist frequency, instead, equals that of the red/blue channels, which
has been already shown in (7.10).

From this analysis it is easily derivable that red and blue channels are more affected by
aliasing effects than the green channel. Despite the application of an optical anti-aliasing
filter, aliasing artifacts often arise due to the way the signal is reconstructed in terms of
color interpolation.
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Figure 7.4 : Green array line pairs at the Nyquist frequency.

Color interpolation techniques should be implemented by considering the artifacts in-
troduced by the sensor and the interactions with the other modules composing the image
processing pipeline, as it has been well analyzed in [3]. This means that demosaicing
approaches have to guarantee the rendering of high quality pictures avoiding typical arti-
facts, which could be emphasized by the sharpening module, thus drastically deteriorating
the final image quality. In the meantime, demosaicing should avoid introducing false edge
structures due to residual noise (not completely removed by the noise reduction block) or
green imbalance effects. Green imbalance is a mismatch arising at GR and GB locations.
This effect is mainly due to crosstalk [4].

In the last years a wide variety of works has been produced about color interpolation,
exploiting a lot of different approaches [5]. In this Chapter we review some of the state
of the art solutions devoted to demosaicing and antialiasing, paying particular attention to
the patents [6].

7.2 Color Interpolation Techniques

Demosaicing solutions can be basically divided into two main categories: spatial-domain
approaches and frequency-domain approaches.

7.2.1 Spatial-Domain Approaches

In this sub-section we review some recent solutions, devoted to demosaicing, which are
typically fast and simple to be implemented inside a system with low capabilities (e.g.,
memory requirement, CPU, low-power consumption, etc.).
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In the following we present techniques based on spatial and spectral correlations. With
reference to Fig.(7.5), the methods, exploiting intrachannel correlation, separately process
each channel of the color image (Fig.(7.5(a))). According to this principle, within a ho-
mogeneous image region, neighboring pixels share similar color values, thus a missing
value can be retrieved by averaging the pixels close to it. On the other hand the majority
of techniques which are based on local consideration and/or color spectral characteris-
tics (interchannel) coming from all the color channels to interpolate each color channel,
Fig.(7.5(b)).

Input
color

Interpolato

Interpolato

Interpolato Output
color

or

or

or

(a)

Input
color

Interpolato

Interpolato

Interpolato Output
color

or

or

or

(b)

Figure 7.5 : Image processing paradigms: (a) Intrachannel; (b) Interchannel Correlation.

Spatial Correlation Based Approaches
One of the principles of color interpolation techniques is to exploit spatial correlation.

According to this principle, within a homogeneous image region, neighboring pixels share
similar color values, so a missing value can be retrieved by averaging the pixels close to
it. In presence of edges, the spatial correlation principle can be exploited by interpolating
along edges and not across them. Techniques which disregard directional information
often produce images with zipper effect. Bilinear interpolation, explained in Section 7.1,
belongs to this class of algorithms. On the contrary, techniques which interpolate along
edges are less affected by this kind of artifact. Furthermore, averaging the pixels which
are across an edge also leads to a decrease in the sharpness of the image at the edges.

Edge based color interpolation techniques are widely disclosed in literature, and they
can be differentiated mainly according to the number of directions, the way adopted to
choose the direction to use in the interpolation and the interpolation method.

The method in [7] discloses a technique which firstly interpolates the green color
plane, then interpolates the remaining two planes. A missing G pixel can be interpolated
horizontally, vertically or by using all the four samples around it. With reference to the
neighborhood of Fig.(7.6) the interpolation direction is chosen through two values:

ΔH = |−A3+2 ·A5−A7|+ |G4−G6| (7.12)
ΔV = |−A1+2 ·A5−A9|+ |G2−G8| (7.13)

which are composed of Laplacian second-order terms for the chroma data and gradients
for the green data, where the Ai can be either R or B.
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Once the G color plane is interpolated, R and B at G locations are interpolated. In
particular, a horizontal predictor is used if their nearest neighbors are in the same row,
whereas a vertical predictor is used if their nearest neighbors are in the same column.
Finally, R is interpolated at B locations and B is interpolated at R locations.

� A1

G2

A3� �G4 A5

G2

�G8

�A9

1

2

�� �5 �G6 A7

2

�8

�9

Figure 7.6 : Considered neighborhood.

Although the interpolation is not just an average of the neighboring pixels, wrong
color can be introduced near edges. To improve the performances, in [8] a control factor of
the Laplacian correction term is introduced. This control mechanism allows increasing the
sharpness of the image, reducing at the same time wrong colors and ringing effects near
edges. In particular, if the Laplacian correction term is greater than a predefined threshold,
it is changed by calculating an attenuating gain, which depends on the minimum and
maximum values of the G channel and of another color channel. A drawback of these
methods is that G can be interpolated only in horizontal and vertical directions; R and
B can be interpolated only in diagonal directions (in case of B and R central pixel) or in
horizontal and vertical directions (in case of G central pixel).

The approach proposed in [9], similarly to the previous one, interpolates the missing
G values in either horizontal or vertical direction, and chooses the direction depending
on the intensity variations within the observation window. The variation filters, shown
in Fig.(7.7), take into account both G and non-G intensity values. In this case, the inter-
polation of G values is achieved through a simple average of the neighboring pixels in
the chosen direction, but the quality of the image is improved by applying a sharpening
filter. One important peculiarity of this method is the GR −GB mismatch compensator

[1 −1 −2 1 1]

⎡
⎢⎢⎢⎢⎣

1
−1
−2

1
1

⎤
⎥⎥⎥⎥⎦

(a) Horizontal mask (b) Vertical mask

Figure 7.7 : Variation masks proposed in [9].
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step, which tries to overcome the green imbalance issue. In some sensors the photo-
sensitive elements that capture G intensity values at GR locations can have a different
response than the photosensitive elements that capture G intensity values at GB locations.
The GR −GB mismatch module applies gradient filters and curvature filters to derive the
maximum variation magnitude. If this value exceeds a predefined threshold value, the
GR −GB smoothed intensity value is selected, otherwise the original G intensity value is
selected. To interpolate the missing R and B values, the color correlation is exploited. In
fact, discontinuities of all the color components are assumed to be equal. Thus, color dis-
continuity equalization is achieved by equating the discontinuities of the remaining color
components with the discontinuities of the green color component. Methods which use
color correlation in addition to edge estimation usually provide higher quality images.

All the already disclosed methods propose an adaptive interpolation process in which
some conditions are evaluated to decide between the horizontal and vertical interpolation.
When neither a horizontal edge nor a vertical edge is identified, the interpolation is per-
formed using an average value among surrounding pixels. This means that resolution in
appearance deteriorates in the diagonal direction. Moreover, in regions near the vertical
and horizontal Nyquist frequencies, the interpolation direction can abruptly change, thus
resulting in unnaturalness in image quality. To overcome the above mentioned problems,
the method in [10] prevents an interpolation result from being changed discontinuously
with a change in the correlation direction. First of all, vertical (ΔV ) and horizontal corre-
lation values (ΔH) of a target pixel to be interpolated are calculated by using the equations
in (7.12). Then, a coefficient term, depending on the direction in which the target pixel
has higher correlation, is computed:

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 i f ΔH = ΔV

1− ΔV
ΔH

i f ΔH > ΔV

ΔH
ΔV

−1 i f ΔH < ΔV

(7.14)

Thus K has values in the range [-1,1].
The K coefficient is used to weight the interpolation data in the vertical or horizontal

direction with the interpolation data in the diagonal direction. If K has a positive value
(ΔV < ΔH), that is a vertical edge is found, a weighted average of the vertical interpolated
value (Vvalue) and the two-dimensional interpolated value (2Dvalue) is calculated using the
(7.15), where Ka is the absolute value of the coefficient K.

Out put = Vvalue ×Ka+2Dvalue × (1−Ka) (7.15)

Obviously, if K is a negative value a weighted average of the horizontal interpolated
value and the two-dimensional interpolated value is computed. As a result, a proportion of
either the vertical or horizontal direction interpolation data can be continuously changed
without causing a discontinuous change in interpolation result when the correlation direc-
tion changes.
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The approach proposed in [11] is composed by an interpolation step followed by a
correction step. The authors consider the luminance channel as proxy for G color, and
the chrominance channel as proxy for R and B. Since the luminance channel is more ac-
curate, it is interpolated before the chrominance channels. The luminance is interpolated
as accurate as possible in order to not produce wrong modifications in the chrominance
channels. However, after the interpolation step, luminance and chrominances are orderly
refined. The interpolation phase is based on the analysis of the gradients in four directions
(east, west, north and south), defined as follows:

ΔW =
∣∣2L(x−1,y)−L(x−3,y)−L(x+1,y)

∣∣+ ∣∣C(x,y)−C(x−2,y)
∣∣

ΔE =
∣∣2L(x+1,y)−L(x−1,y)−L(x+3,y)

∣∣+ ∣∣C(x,y)−C(x+2,y)
∣∣

ΔN =
∣∣2L(x,y−1)−L(x,y−3)−L(x,y+1)

∣∣+ ∣∣C(x,y)−C(x,y−2)
∣∣

ΔS =
∣∣2L(x,y+1)−L(x,y−1)−L(x,y+3)

∣∣+ ∣∣C(x,y)−C(x,y+2)
∣∣

(7.16)

Since the aim is to interpolate along edges and not across them, an inverted gradient
function is formed:

fgrad(x) =

⎧⎪⎨
⎪⎩

1
x

i f x �= 0

1 i f x = 0

(7.17)

where x represents one of the gradient of (7.16). This function allows to weight more
the smallest gradients and to follow the edge orientation. The interpolation of missing
luminance values is performed using the normalized inverted gradient functions which
weight both luminance and chrominance values in the neighborhood. The chrominance
values are used in the interpolation of luminance to get a more accurate estimation. Simi-
larly, chrominances are interpolated by using both luminance and chrominance data. The
correction step comprises the luminance correction first, and then the chrominance cor-
rection.

The method in [12] aims to generate images with sharp edges. And also in this case a
high frequency component, derived from the sensed color channel, is added to the low fre-
quency component of the interpolated channels. This technique takes into account eight
different directions, as it shown in Fig.(7.8), and uses 5× 5 elliptical Gaussian filters to
interpolate the low frequency component of each color channel (even the sensed one).
For each available direction there is a different Gaussian filter, having the greater coeffi-
cients along the identified direction. These filters have the advantage of interpolating the
missing information without generating annoying jaggy edges.

After having computed the low frequency component, for each color channel, an en-
hancement of the high frequencies content is obtained taking into account the color cor-
relation (7.22). In particular, a correction term is calculated as the difference between the
original sensed value and its low pass component, as it is retrieved through the directional
Gaussian interpolation:

ΔPeak = G−GLPF (7.18)
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Figure 7.8 : Quantized directions for spatial gradients.

This correction term is then added to the low frequency component of the channels to
be estimated:

H = HLPF +ΔPeak (7.19)

The low frequency component, in this method, is calculated according to the identified
direction, so it is less affected by false colors than previous inventions. Moreover, this
solution provides a simple and effective method for calculating direction and amplitude
values of spatial gradients, without making use of a first rough interpolation of the G
channel. More specifically, 3×3 Sobel operators are applied directly on the Bayer pattern
to calculate horizontal and vertical gradients. The orientation of the spatial gradient at
each pixel location is given by the following equation:

or(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan
(

P′ ∗Sobely(x,y)
P′ ∗Sobelx(x,y)

)
if P′ ∗Sobelx(x,y) �= 0

π
2

otherwise

(7.20)

where P′ ∗Sobely and P′ ∗Sobelx are the vertical and horizontal Sobel filtered values, at the
same pixel location. The orientation or(x,y) is quantized in eight predefined directions.
Since the image could be deteriorated by noise, and the calculation of direction could be
sensitive to it, a more robust estimation of direction is needed. For this reason, Sobel
filters are applied on each 3×3 mask within a 5×5 window, thus retrieving nine gradient
data. In addition to the orientation, the amplitude of each spatial gradient is calculated,
by using the following equation:

mag(x,y) =
(
P′ ∗Sobelx (x,y)

)2 +
(
P′∗Sobely (x,y)

)2 (7.21)

The direction of the central pixel is finally derived through the “weighted-mode” op-
erator, which provides an estimation of the predominant amplitude of the spatial gradient
around the central pixel. This operator substantially reduces the effect of noise in estimat-
ing the direction to use in the interpolation phase.
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Spectral Correlation Based Approaches

In this class of algorithms final RGB values are derived taking into consideration the
inter-channel color correlations in a limited region (Fig.(7.5(b))). Gunturk et al. [13]
has demonstrated that high frequency components of the three color planes are highly
correlated, but not equal. This suggests that any color component can help to reconstruct
the high frequencies for the remaining color components. For instance, if the central pixel
is red R, the green G component can be determined as:

G(i, j) = GLPF(i, j)+RHPF(i, j) (7.22)

where RHPF(i, j) = R(i, j)−RLPF(i, j) is the high frequency content of the R channel, and
GLPF and RLPF are the low frequency components if the G and R channels, respectively.

This implies that the G channel can take advantage of the R and B information. Fur-
thermore for real world images the color difference planes (ΔGR = G−R and ΔGB = G−B)
are rather flat over small regions, and this property is widely exploited in demosaicing
and antialiasing techniques. This model using channel differences (that can be viewed as
chromatic information), is nearer to the Human Color Vision system that is more sensitive
to chromatic changes than luminance changes in low spatial frequency regions. Like the
previous example, if the central pixel is R, the green component can be derived as:

G = R+ΔGR (7.23)

The method proposed in [14] belongs to this class. The technique generates by first an
estimation of all color channels (R, G and B) containing the Low Frequencies (LF) only.
This is obtained by taking into consideration an edge strength metric to inhibit smoothing
of detected edges. Then a difference between the estimated smoothed values and the
original Bayer pattern values is performed to obtain the corresponding High Frequency
(HF) values. Finally the low frequency channels and the corresponding estimated high
frequency planes are combined into the final RGB image. In particular the high frequency
values are obtained through the relations described in Table.7.1.

Table 7.1 : Color Correlations defined in [14].
At a Red Pixel At a Green Pixel At a Blue Pixel

R R RLPF +G−GLPF RLPF +B−BLPF
G GLPF +R−RLPF G GLPF +B−BLPF
B BLPF +R−RLPF BLPF +G−GLPF B

Each smoothed LF image is formed by a two-dimensional interpolation combined
with a low-pass filtering excepted for pixels that maximize the edge strength metric.
For example, if the central pixel is a G pixel the four adjacent G pixels, which will be
taken into consideration to estimate the edge strength, are generated by interpolation (see
Fig.(7.9)). Thus the measure of edge strength Ei j, that is proportional to the square of the
actual edge difference, is then calculated according to:

Ei j = (Gi, j −Gi, j−1)2 +(Gi, j −Gi, j+1)2 +(Gi, j −Gi−1, j)2 +(Gi, j −Gi+1, j)2 (7.24)

Demosaicing and Aliasing Correction Image Processing for Embedded Devices   159 

   



�

Gi j�1 G

Gi

Gi,j�1 G

Gi+

Gi j Gi j+1

i�1,j

Gi,j Gi,j+1

+1,j

Figure 7.9 : Pattern of five pixels used to calculate an edge metric on a central G pixel of
the LF (low frequency) G color channel.

By considering this edge metric the algorithm reduce the presence of color artifacts
on edges boundaries.

The method [15] uses an adaptive interpolation technique for each type of Bayer Pat-
tern pixel (R, B, green in the red row GR and green in the blue row GB). In particular
five different interpolators are considered. Generally, to generate estimated values very
close to actual pixel values it applies a nonlinear low pass filter (NLPF) that reflects the
change rate of the data around the center pixel and the data of the central pixel, and by
simultaneously applying a low pass filter (LPF), a band pass filter (BPF) and high pass
filter (HPF) having linear characteristics, thus reducing aliasing and emphasizing high
frequencies. As the process of the interpolation is strictly related to the local position on
the Bayer pattern, the Table.7.2 is introduced as summary of the approach:

Table 7.2 : Color Correlation defined in [15].
Center R Center B Center Gr Center Gb

R’ (7.26) (7.28) (7.28)
G’ (7.25) (7.25)
B’ (7.26) (7.27) (7.27)

where the equations to take into consideration are:

Cy,x =
(a1Cy−1,x +a3Cy,x+1 +a5Cy+1,x +a7Cy,x−1)

(a1 +a3 +a5 +a7)
(7.25)

Cy,x =
(a2Cy−1,x+1 +a4Cy+1,x+1 +a6Cy+1,x−1 +a8Cy−1,x−1)

(a2 +a4 +a6 +a8)
(7.26)

Cy,x =
(a1Cy−1,x +a5Cy+1,x)

(a1 +a5)
(7.27)

Cy,x =
(a3Cy,x+1 +a7Cy,x−1)

(a3 +a7)
(7.28)

where the coefficients ai, with i = 1, ..,8, are weighting factor estimated through the dis-
tance among the central Cy,x pixel and the surrounding values in a window of 5×5 pixels.
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The usage of LPF, BPF and HPF in conjunction to the NLPF allows to reduce aliasing (at
“edges”) and emphasizes the high frequencies components.

In [16] a method based on the smooth hue transition algorithms by using the color ratio
rule is proposed. This rule is derived from the photometric image formation model, which
assumes the color ratio is constant in an object. Each color channel is composed of the
Albedo multiplied by the projection of the surface normal onto the light source direction.
The Albedo is the fraction of incident light that is reflected by the surface, and is function
of the wavelength (is different for each color channel) in a Lambertian surface (or even a
more complicate Mondrian). The Albedo is constant in a surface, then the color channel
ratio is hold true within the object region. This class of algorithms, instead of using
inter-channel differences, calculates the green channel using a well-known interpolation
algorithm (i.e., bilinear or bicubic), and then computes the other channels using the red to
green and blue to green ratios, defined as:

Hb =
B
G

and Hr =
R
G

. (7.29)

An example of such method is described in [17]. In this work the Bayer data are
properly processed by a LPF circuit and an adaptive interpolation module. The LPF
module cuts off the higher frequency components of the respective color signals R, G
and B and supplies RLPF , GLPF and BLPF . On the other hand, the adaptive interpolation
circuit calculates a local pixel correlation from the color signals R and G and executes
interpolation with a pixel which maximizes the correlation to obtain a high resolution
luminance signal.
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Figure 7.10 : RG pixel map for luminance interpolation.

The authors assume that, since the color signals R and G have been adjusted by the
white balance module, they have almost identical signal levels and thus they can be con-
sidered as luminance signals. Taking into consideration the Bayer pattern selected in
Fig.(7.10), they consider the luminance signals arranged as shown in Fig.(7.11), where
the value Y5 has to be calculated according to the surrounding values.

The correlation S for a set of pixels Yn along a particular direction can be defined,
similarly to the (7.29), as follows:

S =
min(Yn)
max(Yn)

(7.30)
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Figure 7.11 : Luminance map of analyzed signal.

where S ≤ 1 and the maximum correlation is obtained when S = 1.
The correlation is calculated for the horizontal, vertical and diagonal directions, and

interpolation is executed in a direction which maximizes the correlation. For instance, for
the vertical direction:

min(Yn) = min(Y1,Y4,Y7) ·min(Y2,Y8) ·min(Y3,Y6,Y9) (7.31)

and

max(Yn) = max(Y1,Y4,Y7) ·max(Y2,Y8) ·max(Y3,Y6,Y9) (7.32)

The correlations in the horizontal and diagonal directions are computed in a similar
way. If the direction which maximizes the correlation is the vertical one, the interpolation
is executed as follows:

Y5 =
(Y2 +Y8)

2
(7.33)

Another way to decide the direction is to consider the similarities between the pixels.
The dispersion degree σR of the color R is calculated as:

σR =
min(R1,R2,R3,R4)
max(R1,R2,R3,R4)

(7.34)

If the dispersion degree is greater than a threshold, interpolation along a diagonal
direction is executed. On the contrary, when the dispersion degree is small, correlation
of the color R is almost identical in any directions, so it is possible to interpolate only G
along the vertical or horizontal direction. This implies that the interpolation is executed
only with G having the highest frequency, thus enabling to obtain an image of a higher
resolution.

Once the luminance signal Y is interpolated, a high pass filter (HPF) is applied to Y
and the color signal R and G. The HPF creates a luminance signal YHPF containing higher
frequency components only. Finally, an adder combines the already computed color sig-
nals RLPF , GLPF and BLPF with the higher frequency component luminance signal YHPF .
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Non Adaptive Approaches

The pattern based interpolation techniques perform, generally, a statistical analysis, by
collecting actual comparisons of image samples with the corresponding full-color images.
Chen et al. [18] propose a method to improve the sharpness and reduce the color fringes
with a limited hardware cost. The approach consists of two main steps:

1. Data training phase:

(a) Collecting samples and corresponding full-color images;

(b) Forming pattern indexes, by selecting the concentrative window for each color
in the Bayer samples and quantizing all the values on the window;

(c) Calculating the errors between the reconstructed pixels and the actual color
values;

(d) Estimating the optimal combination of pattern indexes to be sorted into a
database.

2. Data practice phase:

(a) For each pixel a concentrative window is chosen, and within it, the pixels
are quantized in two levels (Low, High) to form a pattern index, as shown in
Fig.(7.12). This index is then used as key for the database matching.
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Figure 7.12 : Relationship between a color filter array and a concentrative window. (a)
Bayer Pattern, (b) Quantization of acquired samples in two levels: Low (L) and High (H),
(c) Resulting pattern index.

During the data training phase, the proposed method assumes that the reconstructed
value (Recvalue) is function of the original value (Origvalue) and the feasible coefficient set
( f easible coe f f icient set), which can be expressed as:

Recvalue =
Origvalue ∗ f easible coe f f icient set

(sum o f coe f f icients)
(7.35)

Once the value has been calculated for each f easible coe f f icient set, the system
chooses the set having the minimal error between the calculated values and the real value.
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These results are then stored into the database. During the data-practice phase, the recon-
struction is based on color differences rules applied to the pixel neighborhood.

A simpler technique [19] uses a plurality of stored interpolation patterns. To select the
correct interpolation pattern an analysis of the input signal is performed using gradient
and uniformity estimation. In practice, by first the G channel is interpolated using the 8
stored fixed patterns (Horizontal, Vertical, the two Diagonals and the four corners). To
achieve this purpose the uniformity and the gradient are estimated in the surrounding of
the selected G pixel. The minimum directional data estimation Gv(i) (i ∈ [1..8]) , obtained
through the eight fixed patterns, defines the best match with the effective direction.

For example, Fig.(7.13.(a)) shows an interpolation pattern in which low luminance
pixels are arranged along the diagonal.
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Figure 7.13 : Some samples of interpolation patterns.

The directional data Gv(1), which represents a numerical value of the similarity be-
tween the surround of the pixel to be interpolated and the interpolation pattern, is obtained
through the following expression:

Gv(1) =
|G33 −G51|+ |G33 −G42|+ |G33 −G24|+ |G33 −G15|

4
(7.36)

The remaining seven directional data are calculated in a similar manner, taking into ac-
count the fixed direction. The smallest directional data from Gv(1) to Gv(8) identifies the
interpolation pattern which is the best fit to the image neighborhood of the pixel to be
interpolated.

When one interpolation pattern only is present, providing the smallest directional
value, it is chosen to perform the interpolation. On the contrary, when two or more
interpolation patterns provide the smallest directional value, a correlation with the in-
terpolation patterns of the surrounding pixels, whose optimum interpolation pattern has
already been determined, is considered.

Specifically, if one of the interpolation patterns having the smallest value is the in-
terpolation pattern of one surrounding G pixel, this pattern is chosen for performing the
interpolation. Otherwise it is impossible to determine a specific pattern to use for the
interpolation, and thus a simple low pass filter is applied.
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If Gv(1) is the smallest directional value:

G0 =
G15 +2G24 +2G33 +2G42 +G51

8
(7.37)

P0 =
P14 +P34 +P32 +P52

4
(7.38)

Q0 =
Q23 +Q25 +Q43 +Q41

4
(7.39)

where P and Q represent the R and B or B and R values.
If it is impossible to determine a specific pattern:

G0 =
(G22 +G24 +G42 +G44 +4G33)

8
(7.40)

P0 =
(P34 +P32)

2
(7.41)

Q0 =
(Q23 +Q43)

2
(7.42)

Once the missing values for the G pixels have been processed, the algorithm calculates
the missing values for the R and B pixels. If the interpolation patterns, estimated for the
already processed G pixels, describe a fixed direction in the surrounding of the R/B pixel
(that is several patterns indicate the same direction) then this pattern is used to perform the
interpolation. Otherwise the numerical directional data are estimated. Like the G case,
eight different interpolation patterns are stored in the interpolation storage memory and a
directional data value is computed for each of these patterns. When there are two or more
patterns having the smallest directional data value, correlations with the interpolation
patterns of the already interpolated G pixels are evaluated. The reason why G pixels are
taken into consideration instead of R and B pixels is that G pixels are more suitable for
pattern detection than R and B pixels.

This class of techniques is very robust to noise, because it takes into consideration
the interpolation patterns of the already processed pixels, but introduces jagged edges in
abrupt diagonal transitions, due to the equations used in the interpolation step.

Iterative Approaches

In this category we collect all approaches that derive interpolation through an iterative
process able to find after a limited number of cycles the final mosaicized image. In par-
ticular, in [20–22], starting from an initial rough estimate of the interpolation, the input
data are properly filtered (usually using a combination of directional high-pass filters with
some global smoothing) to converge versus stable conditions. These methods proceed in
different ways with respect to the local image analysis but share the overall basis method-
ology.

In [20] a color vector image is formed containing the original Bayer values. After
an initial estimate of the RGB original value for each pixel such quantity is updated by
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taking into account two different functions: “roughness” and “preferred direction”. The
final missing color are defined by finding the values that minimize a weighted sum of
Rough and CCF (Color Compatibility Function) functions over the image by using the
following formula:

Q = ∑
(m,n)

Rough(m,n)+λ ∑
(m,n)

CCF(m,n) (7.43)

where λ is a positive constant while Rough(m,n) is defined in this case as the local sum-
mation of approximated local gradients and CCF(m,n) is a function that penalizes local
abruptly changes. By using the classic Gauss-Siedel approach the method converges after
4-5 iterations.

In [21] and [22] the luminance channel is properly extracted from input Bayer data
and analyzed in a multiscale framework by applying smoothing filtering along preferred
directions. Chrominance components are smoothed by isotropically smoothing filters.
The final interpolated image is obtained after a few iterations. Just before to start a new
iteration the pixel values are reset to the original (measured) values.

7.2.2 Frequency-domain Approaches
Demosaicing is an ill posed problem and thus it cannot have a unique solution. This can
be easily understood by considering that different real images can have the same mosaiced
representation [23]. The mosaicing operation cannot be inverted and thus, it necessary to
consider a priori assumptions to extrapolate the missing information. All the demosaicing
algorithms use specific a priori assumptions to design the interpolator operator. One of
the a priori assumption is the band limited of image signal and the limit is due to the
sampling rate of the color channels.

In natural images, the energy spectrum is primarily present in a low frequency region
and high frequencies along the horizontal and vertical axes [24], and the human visual
system is more sensitive to these high frequencies than to the ones present at the corner
of the spectrum. The demosaicing algorithms in the frequency domain exploit these band
limit assumptions.

Fourier Transform Analysis and Processing

Several demosaicing algorithms in the Fourier domain have been proposed in literature
[25–27] exploiting the spectrum properties of the CFA mosaiced images. The spectral
representation of a CFA image can be directly derived from its representation in the spatial
domain.

A color image I can be represented as:

I (x,y) = {Ci (x,y)} , i ∈ {R,G,B} ,(x,y) ∈ N
2 (7.44)

where Ci are the color vectors in the lattice (x,y). Thus an image is expressed as a vector
of three dimensions for each pixel. The color triplets Ci form a linear vector space of
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three dimensions. If we call ICFA the spatial multiplexed version of the image I with a
CFA pattern, we have:

ICFA (x,y) = ∑
i∈{R,G,B}

Ci (x,y) ·Di (x,y) (7.45)

where Di(x,y) are the sampling functions that have value 1 if the color channel is present
at the location (x,y), or 0 if not present. In case of the Bayer arrangement of CFA, the Di
represent the disjoint shifted lattices and can be expressed in terms of cosine modulation:

DR (x,y) =
1
4

(1+ cos(πx))(1+ cos(πy))

DG (x,y) =
1
2

(1− cos(πx)cos(πy))

DB (x,y) =
1
4

(1− cos(πx))(1− cos(πy))

(7.46)

The mosaiced image ICFA in the Fourier domain is the Fourier transform of the (7.45):

ÎCFA (u,v) = ∑
i∈{R,G,B}

Ĉi (u,v)∗ D̂i (u,v) = R̂CFA (u,v)+ ĜCFA (u,v)+ B̂CFA (u,v) (7.47)

where ∗ denotes the convolution operator, the .̂ represents the Fourier Transform, R̂CFA,
ĜCFA and B̂CFA are Fourier Transform of the sub-sampled color components. The mod-
ulation functions defined in (7.46) are based on cosine and have their Fourier Transform
expressed in Dirac. These transforms can be compactly arranged in a matricial form:

D̂i (u,v) = Δ(u)T M3x3Δ(v) (7.48)

where

Δ(u)=[ δ (u+0.5) δ (u) δ (u−0.5) ]T

and

Δ(v)=[ δ (v+0.5) δ (v) δ (v−0.5) ]T

As expressed in (7.47), the Fourier Transform of the sub-sampled color channels can
be derived by convolving the original Ĉi channels with the corresponding modulation
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functions Di(x,y); making the matrices of (7.48) explicit:

R̂CFA (u,v) = ĈR (u,v)∗
⎛
⎝Δ(u)T

⎡
⎣ − 1

16
1
8 − 1

16
−1

8
1
4 −1

8
− 1

16
1
8 − 1

16

⎤
⎦Δ(v)

⎞
⎠

ĜCFA (u,v) = ĈG (u,v)∗
⎛
⎝Δ(u)T

⎡
⎣ 1

8 0 1
8

0 1
2 0

1
8 0 1

8

⎤
⎦Δ(v)

⎞
⎠

B̂CFA (u,v) = ĈB (u,v)∗
⎛
⎝Δ(u)T

⎡
⎣ − 1

16 −1
8 − 1

16
1
8

1
4

1
8

− 1
16 −1

8 − 1
16

⎤
⎦Δ(v)

⎞
⎠

(7.49)

This matrix representation is useful because it clarifies how the samples are scaled
replications of the Fourier transform of the full resolution channels. The ĜCFA formula
in (7.49) points that the replications are placed on the diagonal directions only, while
the R̂CFA and B̂CFA have replications also on the horizontal and vertical directions. The
Fig.(7.14) shows the Fourier transform of the sub-sampled green channel and of the red
and blue channels. In Fig.(7.14(b)) the spectrum of the whole ICFA is shown. It is evident
the overlapping among the base band and the shifted replication, that is the cause of color
artifacts.

To overcome the aforementioned overlapping, Alleysson [28] started from the com-
monality between the human visual system (HVS) and the CFA based image sensors to
sample one color only in each location (that is a pixels for imaging devices, a cone or a
rod for the human eye) and thus spatial and chromatic information is mixed together. It is
also known that the HVS encode the color information into luminance and opponent color
signals. Similarly, for CFA sensors each color sample is composed by a spatial informa-
tion due its position and chromatic information due to its spectral sensitivity. According
to this representation, the (7.44) can be rewritten as:

I (x,y) = {Ci (x,y)} = φ (x,y)+{ψi (x,y)} = ∑
i∈{R,G,B}

pi ·Ci (x,y)+{ψi (x,y)} (7.50)

The spatial information, expressed by the scalar term φ , is composed by a weighted
sum of each color channel, while { ψi } is a vector of three opponent color components.
Subtracting the luminance to the color image, the chrominance information is obtained.
For CFA images the modulation functions can be rewritten as composed by a constant
part pi and by a fluctuation part with null mean D̃i :

Di (x,y) = pi + D̃i (x,y) (7.51)

The pi represent the probability of presence of each color channel in the CFA. Since
in the Bayer pattern the green components are twice the red and blue pixels, then pR = 1

4 ,
pG = 1

2 and pB = 1
4 . According to the (7.45) the ICFA is now:

ICFA (x,y) = ∑
i∈{R,G,B}

pi ·Ci (x,y)+ ∑
i∈{R,G,B}

Ci (x,y) · D̃i (x,y) (7.52)

168   Image Processing for Embedded Devices Guarnera et al. 

   



(a) Input image.
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(f) G CFA Spectrum.

Figure 7.14 : Example of spectrum with relative channels.
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The first term represents the luminance and the second vectorial term represents the
chromatic components. this representation highlights how the luminance term in (7.52)
is the same of (7.50), that is the luminance in CFA images is exactly present and not
subjected to interpolation even if it is subjected to aliasing with chrominances. Thus a
good estimation of luminance information is fundamental. The localization of luminance
is performed on the Fourier domain. Exploding the (7.47) with the equations in (7.49), it
easily to rewrite ÎCFA as:

ÎCFA (u,v) = ∑
i∈[R,G,B]

pi ·Ĉi (u,v)

+
1
8 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−ĈB (u−k,v−l)

]
+

1
16 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−2ĈG (u−k,v−l)+ĈB (u−k,v−l)

] (7.53)

If we pose:

L̂(u,v) =
1
4

ĈR (u,v)+
1
2

ĈG (u,v)+
1
4

ĈB (u,v)

Ĉ1 (u,v) =
1
16 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−2ĈG (u−k,v−l)+ĈB (u−k,v−l)

]
Ĉ2 (u,v) =

1
8 ∑

k∈{−0.5,0.5}
∑

l∈{−0.5,0.5}

[
ĈR (u−k,v−l)−ĈB (u−k,v−l)

]
(7.54)

where L̂(u,v) is the luminance, Ĉ1(u,v) and Ĉ2(u,v) are the chrominance, the (7.53) be-
comes:

ÎCFA (u,v) = L̂(u,v)+Ĉ1 (u,v)+Ĉ2 (u,v) (7.55)

The relations in (7.54) can be expressed in matricial form:⎡
⎣ L̂(u,v)

Ĉ1 (u,v)
Ĉ2 (u,v)

⎤
⎦ =

⎡
⎣ 1

4
1
2

1
4

−1
4

1
2 −1

4
−1

4 0 1
4

⎤
⎦ ·

⎡
⎣ ĈR (u,v)

ĈG (u,v)
ĈB (u,v)

⎤
⎦ (7.56)

The inverse of this matrix represents the relation between the RGB values in the CFA
image and the luminance/chrominance signals in the Fourier domain.

The spectrum of L̂(u,v) is not shifted, Ĉ1(u,v) is located at the corner of the spec-
trum, while Ĉ2(u,v) is located at the sides of the spectrum, as shown in Fig.(7.15) and
Fig.(7.16). The smoothness of the color difference channels implies a more limited band
for Ĉ1(u,v) and Ĉ2(u,v) and, consequently, the replication are more compact and less
overlapping than the R and B subsampled channels. This allows to design better per-
forming filters to discriminate luminance from the shifted bands than in the R, G and B
representation.
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Figure 7.15 : Luminance Spectrum.
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(b) Ĉ2(u,v)

Figure 7.16 : Chrominances spectrum.

Alleyson [28] proposed the filter in Fig.(7.17) to select the luminance. This filter is
able to cut the frequencies where Ĉ1 and Ĉ2 are located, leaving the luminance unchanged,
as can be seen in Fig.(7.17(b)). Other studies [29,30] proposed different filters, depending
on the adopted filter design methodology. The demosaicing algorithms based on this
frequency analysis start estimating the luminance by filtering the ÎCFA image.

The luminance is then subtracted to the CFA image, obtaining the chrominance. The
estimated chrominance is still subsampled and multiplexed. A further demulitiplexing
step separates the chrominances in three channels, containing each component color
where it is defined and zeros otherwise. The final step is the interpolation to recover
the missing chrominance information. The interpolation can be simple because it is ap-
plied to smooth channels. The results of this interpolation are the difference channels
R-L, G-L and B-L. The estimated Luminance is added to these channels to recover the R,
G and B signals.

Dubois [31] proposed an alternative demosaicing approach. It is based on the initial
estimation of the chromatic components C1 and C2. These bands are located at the corners
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Figure 7.17 : Selection filter proposed by Alleysson [28].
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Figure 7.18 : Spectrum areas analysis.

and sides of the Fourier spectrum, and can be isolated using bandpass filters. the first one,
H1 used to estimate C1, is centered at frequency (0.5, 0.5):

Ĉ1 (u,v) = ÎCFA (u,v) ·H1 (u,v) (7.57)

The result of this filtering is shifted in base band. Analyzing in Fig.(7.18) the ICFA
spectrum, is noticeable that the crosstalk in CFA images is mainly in between luminance
and C2 components. Given multiple and shifted copies of the signal C2, they can be
exploited to better recover the original signal. ICFA is filtered by two other bandpass
filters H2A and H2B. The results are demodulated in baseband to estimate the C2A and
C2B, the two sub-bands so that C2=C2A + C2B, and placed on the vertical and horizontal
axes of the spectrum. The more annoying artifact in demosaiced images is due to the
crosstalk caused by the luminance energy near the frequencies (1

2 , 0) and (0, 1
2) where the
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modulated C2 is present. In this case nothing can be done to perfectly separate the signals.
However, the overlapping is often present in only one of the two bands. Leveraging on
this behavior, the C2 can be recovered as an adaptive sum of C2A and C2B, where the
component suffering less from crosstalk is weighted more. The weighting function is
modulated by a local estimation of the crosstalk, obtained analyzing the energy in two
bands along the horizontal and vertical axes, the results are the local average energies ex
and ey. The estimate of C2 is obtained through a weighted sum:

C2 (x,y) = w(x,y)C2A (x,y)+(1−w(x,y))C2B (x,y) (7.58)

where
w =

ey

ex + ey
(7.59)

Once C1 and C2 have been estimated (in baseband), the luminance L is recovered by
subtracting them to the ICFA image. The inverse of the (7.56) matrix is at last applied to
yield the R, G, B values.

Wavelets Based Algorithms

Another exploited research direction for demosaicing is in the wavelet domain [32]. In
[33], to overcome the problem of quincoux G pattern, the Gr (green samples on red rows)
and Gb (green samples on blue rows) are separately processed, thus the color channels to
be considered are four: R, B, Gr and Gb. Each plane has a dimension half respect to the
original one. The interpolation processes these four planes and thus acts as a zooming
[34]. The wavelets, as shown in Fig.(7.19) represent an image into sub-bands. The LL
band contains the most of energy for the image signal. Ignoring the remaining bands, it
is possible to reconstruct the image, where the zooming is mainly the antitransform of
wavelets. In [33] an approach to interpolate the wavelet coefficients of the other sub-
bands is proposed using a local spatial analysis to estimate the missing coefficients. This
approach is based on the fact that, using the DWT5/3 (the same wavelets transform used in
the JPEG2000 standard), if a coefficient has a value close to zero, the corresponding image
region is smooth/ homogeneous. On the opposite, if the value is high, in the corresponding
image region there is great variability. Thus a simple spatial correlation estimator of the
input image values pi is considered (in both horizontal and vertical direction):

ΔH = |pi, j − pi, j+1|
ΔV = |pi, j − pi+1, j| (7.60)

Let consider the case of estimating the coefficients wav coe fi of the HL band. If the
value of ΔH is low, then the correspondent wavelets coefficient in HL is 0 because there
is a high correlation between adjacent pixels. If this value is too high, there is a low
correlation and the interpolation takes into consideration other pixels:

wav coe fi = f
(

pi, j, pi, j−1
)

(7.61)
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If the value is in a predetermined range the coefficients are found using correlated
pixels:

wav coe fi = f
(

pi, j, pi, j+1
)

(7.62)

This approach is the same for LH band, considering the ΔV threshold measures. The
HH band is not interpolated due to the lower correlation of the input pixel values and the
wavelets coefficients in this band. The demosaicing approach based on the coefficient
interpolation is shown in Fig.(7.19).
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Figure 7.19 : Wavelets-based color interpolation.

This approach does not take into consideration any channel correlation, while another
important demosaicing algorithm that uses the interchannel correlation has been proposed
by Gunturk et al. [13]. Starting from the observation that on natural scenes all the three
channels are very likely to have the same edge content, the authors show that the high
frequencies subbands LH, HL and LL of each color are highly correlated. This can be
expressed in the form

|LH
(
Ki, j

)−LH
(
Gi, j

) | < threshold
|HL

(
Ki, j

)−HL
(
Gi, j

) | < threshold
|HH

(
Ki, j

)−HH
(
Gi, j

) | < threshold
(7.63)

where K is the R or B channel in the CFA image The aliasing is removed using a Pro-
jection Onto Convex Sets (POCS) approach [35, 36]. The constraints set are based on
the interchannel differences and on the observed data (original CFA pixels). This POCS
method projects the initial estimate onto this constraint set to reconstruct the red and blue
channels. The observation constraint set ensures that the interpolated color channels are
consistent with the observed data; that is, the color samples captured by the sensor can
not change during the reconstruction process. The projection onto the ”observation” con-
straint set is performed by inserting the observed data into their corresponding locations
in the color channels at each iteration. The second constraint set imposes the similarity
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of high frequency of the color channels. The projection onto the ”detail” constraint set is
performed by first decomposing the color channels into LL, LH, HL, HH subbands and
then updating the high frequency subbands of the R and B channels only if the detail sub-
bands of the difference planes R-G and B-G exhibit high values and, at last, restoring them
with a bank of synthesis filters. This constraint is able to drastically reduce the aliasing.

A more detailed description of the whole demosaicing algorithm is the following:

1. An initial guess of the full color image is obtained using a simple linear interpola-
tion;

2. The green channel is updated using the high frequencies of the red/blue channels:

(a) The red and blue channels in the CFA image are a downsampled version of
the full color image channels;

(b) Consider a downsampled version of the green channel corresponding to all the
interpolated data in the red and blue location separately;

(c) Decompose the blue and corresponding green channel, then the red and cor-
responding green channel into subbands;

(d) The LH, HL and HH subband of the two green channels are replaced with the
related subbands of the red and blue channels, that corresponds to set to 0 the
threshold in the (7.63);

(e) Reconstruct the green channel through the inverse transform and place these
new pixels in the initial guess of the green channel;

3. Iterate until a stop criterion is reached:

(a) Decompose the channels and update the red and blue high frequency coeffi-
cients that do not verify the (7.63);

(b) Reconstruct the red and blue channels, and replace the obtained values with
the original ones (in the CFA image) at the red/blue location.

7.3 Post-processing Techniques for Aliasing Correction
The two main types of demosaicing artifacts are false colors and zipper effect. False col-
ors are those artifacts corresponding to noticeable color errors as compared to the original
image. One example is shown in Fig.(7.20(a)), where the left hand is the full-color origi-
nal image and the right hand is the demosaiced image with false colors. The zipper effect
refers to abrupt or unnatural changes of color differences between neighboring pixels,
manifesting as an ”on-off” pattern. One example is shown in Fig.(7.20(b)), where the
left hand is the full-color image and the right hand is the demosaiced image with the zip-
per effect around the fence region. An explanation of how the false colors arise in color
interpolation is shown in Fig.(7.21). In Fig.(7.21(a)), a graphical representation of the
light intensity distribution incident to an image sensing array comprising, for example 16
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(a) (b)

Figure 7.20 : Example of aliasing artifacts.

pixels, is depicted. For simplicity it will be assumed that the illumination comprises two
colors A (filled circle) and B (square) wherein each color is defined by a selected range
of wavelengths different from the selected range of wavelengths which defines the other
color. As depicted in Fig.(7.21(a)), the incident illumination defines a sharp grey edge
between pixels 6 and 7 and a sharp grey to color transition between pixels 12 and 13.
Fig.(7.21(b)) shows the case in which the illumination incident to an image sensing array
having a filter arrangement in which alternate pixels are overlapped by filter transmitting
either color A or color B. Thus, each pixel receives a single color of illumination, and
linear interpolation between the pixels which sample each color provides the color distri-
bution as shown graphically in Fig.(7.21(c)). From this figure, it is evident that the pixels
6 and 7 on each side of the grey edge no longer provide equal intensities for the colors A
and B and thus will provide a highly visible color artifact or fringe in the reconstructed
image. From this visual example, we can derive that false colors arise if spectral corre-
lation is not well exploited. This concept is also well disclosed in [37], where it is also
explained that zipper effects manifest if spatial correlation is disregarded.

Although most of demosaicing solutions aim to eliminate false colors, some artifacts
still remain. Thus imaging pipelines often include a post-processing module, with the aim
of removing residual artifacts [38]. Post-processing techniques are usually more powerful
in achieving false colors removal and sharpness enhancement, because their inputs are
fully restored color images. Moreover, to fit some quality criteria, they can be applied
more than once. For obtaining better performances, the antialiasing step often follows the
color interpolation process, as a postprocessing step. The following subsections disclose
a variety of state of the art techniques for false colors and zipper effects reduction.

7.3.1 False Colors Cancelling

Many techniques have been proposed in literature for reducing false colors. The conven-
tional approach to solve this problem is to eliminate the color fringes at the expense of
image sharpness by blurring the picture, so that the edges are not sharp enough to create
a color fringe. Blurring the image in this manner, however, has its obvious disadvantages
resulting in a reduction in resolution. Therefore it is necessary to provide a demosaicing
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1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

(c)

Figure 7.21 : Examples of an aliasing artifact caused by color interpolation.

artifact removal technique which reduces color fringing without the amount of blurring
otherwise required. An interesting technique to solve color fringes without blurring the
images was proposed by Freeman [39]. This approach starts from the consideration that
in natural images there is a high correlation between the red, green and blue channel,
especially for the high frequencies, so they are likely to have the same texture and edge
locations. Because of this inter-channel (or spectral) correlation, the difference between
two colors in a neighborhood is nearly constant, while it rapidly increases and decreases in
the area of sharp grey edges, where color interpolation has introduced false colors. With
reference to the example already shown in Fig.(7.21), Fig.(7.22) represents the difference
between colors A and B for each pixel of Fig.(7.21(c)).

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 7.22 : Difference between colors A and B for each pixel.

The rapid increase and decrease in the difference between the two colors in pixels 6
and 7 is a characteristic of the objectionable color fringing and not simply a sudden rise
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in the difference between colors A and B as occurs after pixel 11 and which is indicative
of a change from one color to a different color. Thus, it is not desirable to create such
color spikes as a result of the method of interpolation chosen. A better estimate of the
actual difference between the values for the colors A and B is provided by the graphical
representation of Fig.(7.23), where the sharp peaks and valleys are removed and the other
sharp transitions retained. Toward this goal a median filter, with a width of N pixels,
can be used to replace each value in the graph of Fig.(7.22) with the median value of the
nearest N pixels. For example, if the width of the median filter is selected to be five pixels,
then the value at pixel 6 will become the median value of the pixels 4, 5, 6, 7 and 8.

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 7.23 : Median filtered difference between colors A and B for each pixel.

Since the median values for each pixel are derived from the values of color A minus
the values of color B for each pixel, subtracting the median values from the values of the
color A provides the value of the color B for those pixels that receive only A colored light.
Similarly, adding the median values to the values of the color B provides the value of the
color A for those pixels that receive only B colored light. As depicted in Fig.(7.24), the
Freeman’s approach operates to actively reconstruct the sharp grey edge between pixels 6
and 7 while maintaining the color divergence starting at the pixel 11.

SHARP GREY 
EDGE RESTORED

1 2 3 4 5 6 7 8 99 10 11 12 13 14 15 16

Figure 7.24 : New reconstruction from sampled data.

This method, in a three colors system, operates according to the following rules to
obtain the values for the two missing colors of each pixel.
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1. Pixels which receive only Red light:

R̂(i, j) = R(i, j)
Ĝ(i, j) = R(i, j)+ vGR (i, j)
B̂(i, j) = R(i, j)− vRB (i, j)

(7.64)

2. Pixels which receive only Green light:

R̂(i, j) = G(i, j)− vGR (i, j)
Ĝ(i, j) = G(i, j)
B̂(i, j) = G(i, j)− vGB (i, j)

(7.65)

3. Pixels which receive only Blue light:

R̂(i, j) = B(i, j)+ vRB (i, j)
Ĝ(i, j) = B(i, j)+ vGB (i, j)
B̂(i, j) = B(i, j)

(7.66)

where
vCD (i, j) = median{C (k, l)−D(k, l) |(k, l) ∈ H } (7.67)

H denotes the support of the N ×N local window centered in (i, j), C and D denote two
of the color channels. Analyzing the previous rules, is evident that the original CFA-
sampled color value at each pixel is not altered, and it is combined with median-filtered
inter-channel differences to obtain the other two missing color values. In general, Free-
man’s method is rather effective in suppressing demosaicing artifacts, while preserving
sharp edges. However, some demosaicing artifacts, especially zipper effects, still remain
around sharp edges and fine details. This is partly due to the fact that each pixel has in-
dependent inter-channel differences, and filtering the differences separately does not take
into account the spectral correlation between color planes. To incorporate median filter-
ing with the spectral correlation for more effective suppression of demosaicing artifacts,
Lu and Tan’s approach [38] lifts the constraint of keeping the original CFA-sampled color
values intact. Furthermore, it makes use of the latest processed color values to filter the
subsequent pixels so that estimation errors can be effectively diffused into local neighbor-
hoods. Specifically, it adjusts the three color values at the central pixel of a local window
(the window size is equal to the support of the median filter) as follows:

Ĝ(i, j) = (R(i, j)−vRG(i, j))+(B(i, j)−vBG(i, j))
2

R̂(i, j) = Ĝ(i, j)+ vRG (i, j)
B̂(i, j) = Ĝ(i, j)+ vBG (i, j)

(7.68)

This approach removes more false colors and artifacts than Freeman’s method, but it
considerably blurs images, because it adjusts the green channel of each pixel through an
average of both the red and blue values of the same pixel. Another interesting technique,
which is proposed in [40], updates the R, G, B values adaptively, modifying also the
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original pixel value which could be corrupted, due to the effect of noise. Two updated
values for the green channel are calculated using each color difference domain:

GR (i, j) = R(i, j)+ vGR (i, j)
GB (i, j) = B(i, j)+ vGB (i, j) (7.69)

where

vGR (i, j) = median{G(k, l)−R(k, l) |(k, l) ∈ A}
vGB (i, j) = median{G(k, l)−B(k, l) |(k, l) ∈ A} (7.70)

and A denotes the support of the 5x5 local window centered in (i, j).
The updated G value is determined by the weighted sum of two updated GR and GB

values of each color difference domain and original G value. Subsequently, R and B
values are updated using the updated G value. This process is expressed as:

Ĝ(i, j) = 1
2G(i, j)+ 1

2

{
(1−a(i, j))GR (i, j)+a(i, j)GB (i, j)

}
R̂(i, j) = 1

2R(i, j)+ 1
2

{
Ĝ(i, j)− vGR (i, j)

}
B̂(i, j) = 1

2B(i, j)+ 1
2

{
Ĝ(i, j)− vGB (i, j)

} (7.71)

where a(i, j) is a weight, expressed as:

a(i, j) =
σ2

(G−R) (i, j)

σ2
(G−R) (i, j)+σ2

(G−B) (i, j)
,0 < a(i, j) < 1 (7.72)

σ2
(G−R) and σ2

(G−B) represent the variances of interchannel differences.
As it is apparent from the (7.71), the color correction algorithm proposed in [40],

thanks to the variance information, weights more the flatter color difference domain than
the other. Moreover, the initially interpolated value is not totally exchanged by the up-
dated value, but it is equally weighted for correction. Subsequently, the color values of
the central pixel are replaced by R̂, Ĝ and B̂ so that they will be involved in filtering the
updating pixels.

The local statistics are effectively estimated from a running square window as follows:

E [A(i, j)] = ∑k,l∈A e(k,l)·A(k,l)
∑k,l∈A e(k,l)

σ2
A (i, j) = ∑k,l∈A e(k,l)·(A(k,l)−E[A(i, j)])2

∑k,l∈A e(k,l)
e(k, l) = 1− (A(i, j)−A(k, l))

(7.73)

Such technique has the disadvantage of weighting the unfiltered values together with
the filtered ones, so false colors are reduced, without being completely removed.

In [41], the authors propose to exploit the original uncorrupted Bayer CFA data,
present in the demosaiced image, to correct erroneous color components produced by
CFA interpolation with a localized color ratio model. This technique is based on the as-
sumption that pixels with similar hues but different intensities should exhibit similar (if
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not identical) R/G and B/G color ratios. The post-processing procedure starts updating
the green channel at the original R and B spatial locations as follows:

Ĝ(i, j) = H (i, j)mean(k,l)∈ζ

(
G(k, l)
H (k, l)

)
(7.74)

where H is the R or B central channel and ζ = {(i−1, j) ,(i, j−1) ,(i, j +1) ,(i+1, j)}.
In (7.74) the sampled G values are used together with the interpolated H values to obtain
a local color ratio description G/R or G/B. The proposed local color ratio creates a model
of the hue for the region under consideration and uses it to estimate the G component
based on the original component H. It should be noted that this solution avoids extreme
transitions in hue in the postprocessed images, thus reducing false colors. The second
step consists in updating the R channel at B locations and the B channel at R locations,
according to the 7.75

Ĥ (i, j) = Ĝ(i, j)mean(k,l)∈ζ

(
H (k, l)
Ĝ(k, l)

)
(7.75)

where ζ = {(i−1, j−1) ,(i−1, j +1) ,(i+1, j−1) ,(i+1, j +1)}. The (7.75) differs
from the (7.74) mainly because ζ is modified to take into account locations of the original
R or B CFA data. In the last step of the algorithm R and B color values at G original
locations are updated. The (7.75) is applied now using the original G values G(i, j)
and ζ = {(i−1, j) ,(i, j−1) ,(i, j +1) ,(i+1, j)}. Moreover, two of the values H (k, l)
of (7.75) are original components and the other two are corrected components previously
obtained using (7.75).

Some newer approaches address the problem of removing color artifacts in the YCrCb
domain, instead of the classic RGB color space. In fact, if there is a strong edge in the R
channel, there is usually a strong edge at the same location in the G and B channels; on the
contrary, the YCrCb domain is less correlated, as demonstrated in [42]. Although edges
still tend to be strong in the Y (luminance) plane, the chrominance planes (Cr and Cb) are
smoother than the RGB plane, and hence they are more suitable for interpolation. The
simplest way to remove color artifacts consists in correcting both the chrominance planes
by simply blurring them. One liability with this approach is that there is no discrimination
between false colors and genuine chrominance details. Consequently, sharp colored edges
in the image begin to bleed color as the blurring becomes more aggressive. Adams et al.
in [43] address the problem of eliminating low-frequency colored patterns, such as color
Moiré, by filtering chrominances according to an activity value depending on the nearby
luminance and chrominances. To remove spikes or valleys from these signals, which usu-
ally change smoothly, a median filter can be applied, instead of blurring the chrominance
planes through an average filter. A median filter can remove false colors pretty well from
the image edges, but it could introduce color bleeding artifacts in sharp colored edges.
For this reason the technique proposed in [44] modifies chrominance values with respect
to luminance and local chromatic dynamic ranges, in order to not reduce chromaticity too
much in regions with uniform colors (see also [45]). The dynamic chromatic ranges (DCr
and DCb) and the dynamic luminance range (DY) are evaluated in a 5x5 neighborhood of
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the pixel to be corrected. For each pixel of interest, dynamic luminance and chrominance
ranges may be computed as the difference between the maximum and the minimum value
in the local neighborhood, as follows:

DY = maxI (Y )−minI (Y )
DCr = maxI (Cr)−minI (Cr)
DCb = maxI (Cb)−minI (Cb)

(7.76)

where I is the local neighborhood of the central pixel. Both the dynamic chromatic and lu-
minance ranges are used to calculate a parameter, named CorrectionFactor, which deter-
mines the strength of the filter on chrominances. To remove possible false colors around
sharp edges, the filtering action should be strong. On the contrary, if the luminance edge
is weaker than both the chrominance edges, color bleeding has to be avoided by reducing
the strength of the filter. Thus, the following equation is used to calculate this parameter:

CorrectionFactor =
{

DY i f DY = minI (DY,DCr,DCb)
maxI (DY,DCr,DCb) otherwise (7.77)

The CorrectionFactor determines the power of the false colors correction, according to
the following rule:

Cr = medianCrI + f (CorrectionFactor) · (originalCrI −medianCrI)
Cb = medianCbI + f (CorrectionFactor) · (originalCbI −medianCbI)

(7.78)

where f(x) is defined as:

f (x) = e−
1
2

(
x

sigma

)2

(7.79)

where sigma is a fixed parameter. The (7.78) updates each chrominance value with a
weighted average of the original chrominance (originalCr and originalCb) and the me-
dian value of the chrominance in the neighborhood (medianCr and medianCb). The
weights depend on the CorrectionFactor parameter, through the function f(x). The func-
tion f(x) is the right part of a Gaussian function with expected value equal to zero and
standard deviation equal to sigma. Fig.(7.25) illustrates the trend of the f(x), for a given
sigma value (sigma = 10).

The function f(x) rapidly decreases as the x increases, according to the (7.79). The
value of the standard deviation sigma determines how fast f(x) approaches zero. With
reference to the (7.78), low values of the CorrectionFactor imply a greater contribution
of the original chrominance value; on the contrary, as the CorrectionFactor increases a
higher weight is assigned to the median value. The function f(x) avoids discontinuous
corrections when dynamic ranges change; in fact proportions of both the original value
and the median filtered value are continuously varied to form the final value. This soft-
threshold methodology avoids abrupt transitions between corrected and non-corrected
pixels.

Artifacts suppression can also be implemented in the frequency domain because var-
ious artifacts often occur in high-frequency components. More specifically, in [46] the
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authors propose to correct color artifacts by using the high bands inter-channel correla-
tion of the three primary colors. Each pixel is separated in its low and high frequency
components; then the high frequencies of the unknown components are replaced with
the high frequencies of the Bayer-known component. The low-frequency component is
preserved unchanged since the low-frequency components of the color channels are less
correlated. For example, for a green pixel in the location (i, j), the green value can be
decomposed as:

G(i, j) = Gl (i, j)+Gh (i, j) (7.80)

where Gl and Gh denote the low and high frequency components of the G channel, re-
spectively. R and B components at G locations are corrected according to the 7.81

R̂(i, j) = Rl (i, j)+Gh (i, j)
B̂(i, j) = Bl (i, j)+Gh (i, j)

(7.81)

The correction at R and B original locations is performed in a similar way. The selection
of the low-frequency components is performed using a low-pass filter while the high
frequencies are calculated subtracting the low-frequency values. An effective approach is
to select the low and high frequencies using a 1-D filter, so the interpolation is carried out
only along the edges of the image.

7.3.2 Zipper Cancelling

Zipper effect is an artifact caused by a not correct spatial correlation exploitation. An
artifact introduced by a wrong edge-estimation is usually difficult to remove in a post-
processing phase, so it should be avoided during the interpolation step. Nevertheless,
some techniques exist which reduce this effect. The simplest approach is the application
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Figure 7.25 : Plot of f(x) vs. x, with sigma = 10.

Demosaicing and Aliasing Correction Image Processing for Embedded Devices   183 

   



of a heavy low pass filter to the demosaiced image. An example of antizipper filter is:

AZ =
[

1 1
1 1

]
(7.82)

This filter removes zipper artifacts, but at the same time consistently reduces resolution
thus removing genuine spatial details, which may not be recovered by further image pro-
cessing algorithms.

In [47] the authors propose a method to eliminate the false color and zipper effect
based on an adaptive scheme allowing to determine the specific artifact affecting the pix-
els. The authors use the spectral correlation between color planes to detect and reduce
the artifacts. The block diagram representing the demosaicing artifact removal algorithm
is shown in Fig.(7.26). Before processing each pixel, the zipper detector block produces
a control signal which enables either the false colors removal algorithm or the zipper ef-
fect removal algorithm. More specifically, zipper effect arises when the following three

R

G

B
INTERPOLATORIMAGE

SENSOR

FALSE COLORS

NO

REMOVAL

ZIPPER DETECTOR

YES

ZIPPER EFFECT
REMOVAL

Figure 7.26 : Block diagram of the antialiasing algorithm proposed in [47].

conditions are satisfied:

1. Along the horizontal (vertical) direction passing through the central pixel, the inter-
channel difference between the green channel and the other one (for which there
are the original sampled values) is almost constant;

2. The trend of the central pixel channel in the vertical (horizontal) direction, the inter-
channel difference between the green channel and the other one (for which there are
the original sampled values), is not constant;

3. The trend of the central pixel channel in the vertical (horizontal) direction is in-
creasing or decreasing, or there is a minimum or a maximum in the central pixel.

184   Image Processing for Embedded Devices Guarnera et al. 

   



Zipper effects are then removed using the following two equations:

1. G central pixel
Ĝ(i, j) = G(i, j)
Ĥ (i, j) = f (HSURROUND)
Ĵ (i, j) = G(i, j)+ vJG

(7.83)

2. R/B central pixel (e.g., H)

Ĝ(i, j) = f (GSURROUND)
Ĥ (i, j) = H (i, j)
Ĵ (i, j) = Ĝ(i, j)+ vJG

(7.84)

where f (·) is an average operator, whose inputs are the surrounding pixels (HSURROUND
or GSURROUND) along the direction having almost constant inter-channel differences and
vJG is calculated using the (7.67).

The post-processing approach described in [48] is not only based on the color differ-
ence model, but also uses fully adaptive edge-sensing mechanism based on the aggregated
absolute differences between the CFA inputs. The spectral correlation between the G and
R (or B) components of the full-color image is utilized in the proposed post-processing
process to further improve color appearance of the image. Based on the color differ-
ence model, the proposed post-processor reevaluates the G components produced by the
demosaicking process as follows:

Ĝ(i, j) = H (i, j)+
∑(k,l)∈ζ w(k, l)(G(k, l)−H (k, l))

∑(k,l)∈ζ w(k, l)
(7.85)

where ζ = {(i−1, j) ,(i, j−1) ,(i+1, j) ,(i, j +1)} denotes the locations of the original
G components surrounding the interpolated location (i, j); H (i, j) denotes the original
R (or B) component at the position under consideration and w(k, l) are the edge-sensing
weights, which have to satisfy two conditions:

1. each weight is a positive number, w(k, l) ≥ 0;

2. the summation of all the weights, ∑(k,l)∈ζ w(k, l), is equal to unity.

More specifically, these weights are calculated as follows:

w(k, l) =
1

1+d (k, l)
(7.86)

where d (k, l) is the aggregated absolute difference between the G sampled values:

d (k, l) = ∑
(g,h)∈ζ

|G(k, l)−G(g,h)| (7.87)

These weights are used to regulate the contribution of the neighboring input components
G(k, l) in the (7.85). In fact, when no edge is positioned across the directions in which
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the image is post-processed, the corresponding aggregated absolute difference d (k, l) is
small and the CFA component G(k, l), via its corresponding weight w(k, l), contributes
greatly in (7.85). The opposite is true in case of an edge. After the post-processing of the
G channel is complete, the R (or B) component at B (or R) locations is post-processed as
follows:

Ĥ (i, j) = Ĝ(i, j)+
∑(k,l)∈ζ w(k, l)(H (k, l)−G(k, l))

∑(k,l)∈ζ w(k, l)
(7.88)

The weights are computed as in (7.86), with d (k, l) = ∑(g,h)∈ζ |H (k, l)−H (g,h)| where
ζ = {(i−1, j−1) ,(i−1, j +1) ,(i+1, j−1) ,(i+1, j +1)}.
Finally, the R and B components at G locations are processed. In this case the (7.88) is
applied again with ζ = {(i−1, j) ,(i, j−1) ,(i+1, j) ,(i, j +1)} which are the locations
of the R (or B) pixels surrounding the central G pixel.
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Abstract: Since the large diffusion of mobile devices with embedded camera and flashgun, the
red eye artifacts have de-facto become a critical problem. Red eyes are caused by the flash light
reflected off the blood vessels of the human retina. This effect is more pronounced when the flash
light is closer to the camera lens, which often occurs in compact imaging devices. To reduce these
artifacts, most cameras have a red-eye flash mode which fires a series of pre-flashes prior picture
acquisition. The biggest disadvantage of the pre-flash approach is power consumption (flash is the
most power-consuming part of imaging devices), and thus it is not suitable for power-constrained
systems (e.g., mobile devices). Moreover, this approach does not guarantee total prevention of red
eye artifacts. Red eye removal must then be performed in post-processing, through the use of au-
tomatic correction algorithms. The aim of this Chapter is to depict the state of the art of automatic
detection and correction of red eyes, taking into account strong points and drawbacks of the most
well-known techniques, with particular emphasis on the image degradation risk associated to false
positives in red eye detection and to wrong correction of red eyes. Furthermore the problem of
estimating the quality of the final result, without reference image, is examined.

8.1 Introduction
Red eye artifacts are a well-known problem in digital photography . They are caused
by direct reflection of light from the blood vessels of the retina through the pupil to the
camera objective. When taking flash-lighted pictures of people, light reflected from the
retina forms a cone, whose angle α depends on the opening of the pupil. Be β the angle
between the flash-gun and the camera lens (centered on the retina), the red eye artifact is
formed if the red light cone hits the lens, that is, if α is greater than or equal to β (see
Fig.(8.1)). Small compact devices and point-and-click usage, typical of non-professional
photography, greatly increase the likelihood for red eyes to appear in acquired images.

High-end cameras often feature a separate flash with an extensible and steerable
bracket, which allows for more distance between the flash and the lens, thus reducing
the probability for red eyes to appear. One preventive measure suitable to both high-end
and low-end devices is to make additional flashes before actually taking the photograph
(pre-flash). This method, first proposed by Kodak [1], gives time to pupils to shrink in or-
der to reduce the reflectance surface, thus making red eyes less likely. It is important that
enough time elapses between flashes to account for the response time of the pupils (see
Fig.(8.2)). This approach is effective, but it has the disadvantage of greatly increasing
power consumption, which may be problematic for power-constrained mobile devices.
Also, the additional flashing may sometimes be uncomfortable to people.

Red eye prevention methods reduce the probability of the phenomenon but don’t re-
move it entirely. Most of the times, then, the picture must be corrected during post-
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Figure 8.1 : The red eye is caused by the reflection of the flash off the blood vessels of
the retina. The camera will record this red hue if the angle β is not greater than α (a),
otherwise the red eye is not recorded (b).

~ 0.3 to 0.6

pre-flash

time
65 seconds

flashshutter opening

Figure 8.2 : Timeline explaining the pre-flash approach. Before the actual acquisition, a
flash is fired. After a short time, the shutter opens and light enters the sensor. At the end
of the exposure time the “true” flash is fired. Time between flashes is such that the pupils
have time to react and shrink.

192   Image Processing for Embedded Devices Messina and Meccio 

 

   



processing. Red eye removal is a very challenging task: red eyes may vary in shape and
color, and may also differ in position and size relative to the whole eye. Sometimes light is
reflected on a part of the retina not covered with blood vessels, yielding a yellow or white
reflection (golden eyes). Some examples of the phenomenon are showed in Fig.(8.3).
Designing a system which can effectively address all the possible cases is very difficult.

(a) (b)

(c) (d)

(e) (f)

Figure 8.3 : Examples of the variability of the red eye phenomenon. Golden eyes are
also visible.

For red eyes to be removed, they must be first reliably detected then properly cor-
rected. Detection methods are divided into semi-automatic methods, which ask the user
to manually localize and point the red eyes, and automatic methods, which detect the red
eyes themselves. In the first case the eyes are manually selected using a visual interface
(e.g., Adobe Photoshop [2], Corel Paint Shop Pro [3], ACDSee [4], etc.). This is feasible
because eyes are easy to localize for men, but requiring manual intervention for every
picture taken is unsuitable for non-professional usage; moreover, it may be difficult to
have such an interface on a mobile device.

Automatic methods attempt to find red eyes on their own. Since they don’t require
user intervention, they are easier to use and more appealing, thus suitable for embedded
devices. However, automatic detection of red eyes is a very challenging task, due to the
variability of the phenomenon and the general difficulty in reliably discerning the shape
of eyes from other details.

Red eye correction techniques, on the other hand, may be more or less invasive. Gen-
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erally speaking, “easier” cases may be addressed with a softer correction, while some-
times a stronger intervention is needed. Since the aim is to provide a corrected image
which looks as natural as possible, a less invasive correction is preferred when the natural
aspect of the eye is reconstructible from the acquired image.

This Chapter aims to provide an overview of well-known automatic red eye detection
and correction techniques, pointing out working principles, strengths and weaknesses of
the various solutions. For further information about red eye removal, see recent surveys
by Gasparini et al. on academic papers [5], on patents [6] and some of our personal
works [7–9].

This Chapter is organized as follows. Section 8.2 explores red eye detection. Section
8.3 describes methods for red eye correction, while section 8.4 gives an insight into the
problem of unwanted and improper corrections, showing their side effects. Lastly, Section
8.5 provides criteria to evaluate the quality of the results.

8.2 Eye Detection
The main difficulty in detection of red eyes is their great degree of variability. In the
easier cases, the pupil has a normal shape and size and differs from a regular one only
by its color. However, it is not uncommon for the red reflection to spread over the iris
generating an unnatural luminance distribution. Usually a small white glint is also present,
representing the direct reflection of the flash on the surface of the eye and giving the eye
much more naturalness.

Typical red eye detection approaches involve extraction of red zones combined with
skin extraction, shape template matching, and/or face detection. Some approaches also
make use of classifiers to further refine their results.

8.2.1 Color Based
Color based approaches are the simplest ones. They are based on detecting red zones
which may correspond to red eye artifacts. As a typical constraint for the position of the
red eyes, they also detect the human skin, then consider some criteria about the relative
position of the red eyes and the skin (usually, the eyes must be almost completely sur-
rounded by nearby skin). Some color based approaches also detect the sclera (the white
part of the eye), distinguishing it from the skin. Possible constraints may be imposed
about the geometry of the red zones, such as discarding candidates too much elongated
to represent a red pupil. This kind of approaches is quite simple, but does not take into
account more complex features like, e.g., the presence of the various parts of the eye or
the detection of the face.

One of the biggest problems of color-based techniques is characterizing exactly the
colors to look for. Usually, interesting portions of the color space (corresponding to red,
skin color, etc.) are delimited by hard thresholds, but they may also delimited by soft
margins, yielding a fuzzy probability for the color to belong to the region. However,
finding proper boundaries for the regions is a challenging task. The color of red eyes is
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heavily influenced by the type of flash used, the sensor and the processing pipeline. While
this is not a big issue, since the thresholds may be fine-tuned to adapt to the acquisition
system, there are external factors which may influence the color of the eyes, including
(but not limited to) the age of the person, the opening of the pupils, the distance from
the camera, and the angle between the eyes and the flash. The variability is so high that
even the same subject in one picture may have two different colored red eye artifacts, or
a red eye and a regular one (see Fig.(8.4)). Moreover, if the flash is not very strong (as
is often the case with mobile devices), the external illuminant may produce a noticeable
color cast on the picture, which adds another degree of variability to the colors. Similar
considerations apply to the color of the skin and of the sclera.

(a) (b)

Figure 8.4 : Picture (a) shows two very different red eyes; picture (b) shows one red eye
along with a regular one.

The red color region may be defined in different color spaces. In the RGB space, a
possible definition is [10]: ⎧⎪⎪⎨

⎪⎪⎩
R > 50
R/(R+G+B) > 0.40
G/(R+G+B) < 0.31
B/(R+G+B) < 0.36

(8.1)

Often, instead of hard thresholds, a Redness function is provided. This function is an
estimate of how well the color of each pixel resembles a red eye artifact, and is used as a
way to define soft margins for the red color region. Some possible redness functions [11–
14] are:

Redness = (R−min{G,B}) (8.2)

Redness =
R2

(G2 +B2 +14)
(8.3)

Redness =
max{0,(R−max{G,B})}2

R
(8.4)

Redness = max
{

0,
2R− (G+B)

R

}2

(8.5)
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As an alternative to select an interesting portion of the color space, it is possible to
compare a redness function with a luminance function, discarding pixels whose lumi-
nance is more noticeable than the redness [15]:

Redness = R− (G+B)/2 (8.6)

Luminance = 0.25R+0.6G+0.15B (8.7)

RedLum = max{0,2 ·Redness−Luminance} (8.8)

Search for red regions may also be performed in color spaces different from RGB,
such as YCC [16] or HSL [17]. See Section 8.2.5 for a complete example of red eye
search and patch extraction performed in the HSL space.

Given a particular choice for the red color region, it is possible to convert each image
to a representation which shows whether each pixel belongs to the region. Such rep-
resentations are called redness maps. According to the employed definition for the red
color region (hard-thresholded or soft-delimited), the redness map is a black-and-white
or full-grayscale image (in the latter case, the redness function is adjusted to the possible
maximums and minimums of the redness function, or to the maximums and minimums
over each particular image). Fig.(8.5) and Fig.(8.6) show redness maps computed using
the above formulas.

Skin extraction may be performed in a similar way as red color extraction. For further
information about skin extraction, see Chapter 3 and Chapter 5.

Other color based information useful to detect red eyes may be gained searching for
the sclera [18] and selecting the zones where the flash has noticeably affected the image
(discarding, e.g., a distant background) [19]. Using thresholding and morphological ope-
rators to combine different masks, it is possible to effectively extract red pupils, as shown
in Section 8.2.5.

8.2.2 Shape Based

Shape based approaches attempt to find eyes exploiting simple information about their
shape. They typically use templates which are matched at different positions and reso-
lutions, in order to search the image for shapes which may correspond to eye features.
The region of interest is then restricted to zones where the response of the templates is
stronger. Using simple circular or square templates it is possible to recognize, e.g., the
difference in intensity between the inner pupil and the outer skin and sclera. Slightly
more complex templates may be useful in locating the other parts of the eye, which helps
to effectively assess the presence or the absence of a red eye [20].

Edge detection filters may also be useful to extract information about shape. It is
possible to use them in conjunction with color tables to make advantage of both spatial
and chromatic information [21].
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5 : Examples of redness maps. (a) Original image; (b-f) redness maps obtained
from (8.1), (8.2), (8.3), (8.4), (8.5), respectively.
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(a) (b)

Figure 8.6 : (a) Redness map obtained from (8.6); (b) redness vs. luminance map com-
puted according to (8.8).

8.2.3 Pairing Verification
One of the most obvious constraints which can be used to filter out false detections is
eye pairing verification [22]. It is based on the assumption that every eye found must be
paired with the other one on the same subject’s face. The two eyes must have the same
size, and they must be in a certain range of distances (possibly proportional to the size,
in order to account for the distance of the subject from the camera) from each other, in
a horizontal or almost horizontal direction. If an eye can’t be paired because it has no
suitable match, it is discarded, since it is most probably a false detection.

This approach is effective, since it is very unlikely for two false positives to satisfy the
pairing criteria, but it presents a major drawback: if a face is partially occluded, so that
only one eye is visible in the picture, and that eye is red, it will not be corrected, since
it can’t be matched to the other one. The same problem will occur when both eyes are
visible but only one is red, or when both are red but only one is detected, possibly due to
a difference in color (see Fig.(8.7)).

8.2.4 Face Detection
The most sophisticated kind of approach to red eye detection is based on face detec-
tion [12]. Restricting the search region to the zones where faces are detected, it is possible
to discard a great number of false positives.

In details, a face detection system determines the locations and sizes of human faces
in arbitrary digital images by making use in some cases of ad-hoc facial features. The
localization is done by considering a bounding box that encloses the region of interest.
The detection problem if often achieved as a binary pattern classification task; the content
of a given part of an image is transformed into features used to train a classifier on example
faces able to decide whether that particular region of the image is a face, or not. For
practical situations is very common to employ a sliding-window technique just using the
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(a)

(b) (c)

Figure 8.7 : In picture (a), only one of the eyes is visible; the red eyes in picture (b) are
very different, and in most cases only one of them will be properly detected; in picture (c)
only one of the eyes is affected by the red eye phenomenon. In all these cases, the pairing
verification will fail.

classifier on small portions of an image (usually squared or rectangular), at all locations
and scales, as either faces or non-faces. In the more general case the face localization
is achieved regardless of position, scale, in-plane rotation and orientation, pose (out-of-
plane rotation) and illumination. Further source of problems are the presence or absence
of structural components (e.g., beards, mustaches and glasses), the facial expression that
has a great impact over the face appearance and the occlusions that occur when faces may
be partially occluded by other objects.

To implement a robust face detector it is fundamental to fix some points relative to the
specific application. In particular it is important to decide the facial representation, the
involved pre-processing, the particular ”cues” (e.g., colors, shape, etc.) and the classifier
design.

In literature a lot of approaches have been published with different capabilities, ad-
vantages and limitations. Of course, the implementation of a face detector system in-
side an embedded device system requires ad-hoc peculiarities due the limited available
resources. The constrained domain imposes to consider methods able to guarantee a
reasonable trade-off between robustness and computational issues. For this reason it is
out of the scope of this Section to provide a detailed review of all related technologies.
See [23, 24] for more specific details.

One of the most popular algorithms in the field is due to Viola and Jones [25]. For
this reason we have decided to describe it in a more details just to give also some useful
suggestions for a practical implementation. The authors introduced for the first time the
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Figure 8.8 : Face Detection Example.

concept of ”integral image”, a way to compute efficiently local features in an incremental
way just to find in a suitable way the underlying scale of the face to be localized. The
integral image Int(x,y) of a given image I at location (x,y) is defined as follows:

Int(x,y) = ∑
(i≤x, j≤y)

I(i, j) (8.9)

It is computed using just a single pass over the image I as described in [25]. By proper
managing such image it is possible to compute any processing over rectangular patches
in a very efficient manner. The corresponding rectangular features can then be computed
as simple differences between adjacent rectangular sums. Although the similarity with
the Haar features [26] are pretty evident, the proposed strategy is able to obtain effective
results in a more efficient way.

The remaining important contribution of the seminal work of Viola and Jones was the
introduction of an ad-hoc classifier making use of a learning approach based on Adaboost
[27]. This classifier is able to discriminate, among a large set of potential features, a
smaller number of elements without lacking too much of accuracy. The system is able to
select, among others, a small number of features just considering a boosting approach [28]
that, given an exhaustive set of positive and negative examples, with a greedy algorithm,
decides the best set of features to be considered both in terms of robustness and fast
detection rate (see Fig.(8.9) an example of rectangular features.).

Finally, they described a way to combine efficiently, in a cascade approach, the output
of different classifiers just to speed-up the overall process. With respect to the former
approaches this method was the first able to work with sufficient accuracy in real time
application.

Of course, the underlying ingredients of a face detector can be improved in several
ways just providing to the overall flow further information to be processed. In [29] is
proposed a learning based face detector able to find human faces in a very fast way. To
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Figure 8.9 : Some examples of rectangular features managed by the algorithm of Viola
and Jones. Each feature can be computed in a very efficient way just using the concept of
integral image.

further speed up the process, a face rejection cascade is constructed to remove most of
negative samples while retaining all the face samples. To do that a series of skin color
features [30] are used as useful prior.

The face localization can be thought as the pre-processing step needed to recognize
the person which the face belong to. Person identification is, of course, a more difficult
task especially if implemented in a so constrained domain such as imaging devices. Also
in this field there is a huge number of papers published over the past decades, specifically
devoted to biometric world. By the way, personal photos have an associated context,
often already available to the user of the photo management system. In newer systems the
combination of user feedback with EXIF meta information (and, if available, with GPS
location) can give an effective improvement to the unsupervised recognition [31].

First commercial products are available also to be used in novel application context
such as social network [32, 33], etc.

The quality of the detection greatly depends on the quality of the face detector. Some-
times it is limited to frontal upright faces, while red eye artifacts may be located in profile
or three-quarter views of subjects (especially when taking snapshots). Therefore, face
detectors with such limitations are not suitable for red eye detection. Another important
degree of variability is the age of the subject: children are difficult to detect, since their
faces have a different shape and different features than those of adults. Nonetheless, they
have a higher chance to present red eye artifacts, since their pupils are usually more open.
Thus, it is important for face detection to be robust both to the angle of view and to the
age of the subject.

Another important issue related to face detection is that it doesn’t help discard false
detections on the face, which are usually critical. An additional constraint which may be
imposed is to only accept eyes located in the upper half of the detected face. This helps
filter out some false detections (e.g., lips or tongue) but it keeps the ones near the eyes
(e.g., details of glasses or pimples on the forehead).

8.2.5 Example of Red Patch Extraction

A complete procedure to extract red eye patches is depicted here. The RGB image is
transformed into HSL color space, in order to easily distinguish the red zones using the
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H, S and L channels. Let r,g,b∈ [0,1] be the red, green and blue coordinates, respectively,
of a color in the RGB space. Let max be the greatest of r, g, and b, and min the least. The
hue angle h ∈ [0,360] for HSL space, is derived as follows:

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 i f max = min
(60 ◦× g−b

max−min +360◦)mod 360◦, i f max = r
(60◦× b−r

max−min +120◦), i f max = g
(60◦× r−g

max−min +240◦), i f max = b

(8.10)

Saturation and lightness s, l ∈ [0,1] are computed as follows:

l =
1
2
(max+min) (8.11)

s =

⎧⎨
⎩

0 i f max = min
max−min

2l , i f l ≤ 1
2

max−min
2(1−l) , i f l > 1

2

(8.12)

The value of h is generally normalized to lie between 0 and 360◦, and h = 0 is used
when max = min (that is, for grays) though the hue has no geometric meaning there,
where the saturation s is zero. Red values are taken just considering −60◦ ≤ h ≤ 20◦ and
saturation s ≥ 0.6.

Employing such filtering, a binary mask with the red zones is properly derived. The
mask is not always perfect because the original image can contain isolated red pixels. A
closing operation (i.e., a combination of dilation and erosion morphological operations)
is needed. In our approach we have used the following 3×3 structuring element:

m =

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ (8.13)

Once the closing operation has been accomplished, a search of the connected com-
ponents is achieved using a simple scanline approach. Each group of connected pixels
is labeled and analyzed through simple geometric constraints. The single region of con-
nected pixels is classified as possible red-eye candidate if the following constraints are
satisfied:

• the size Si of the connected region i is within the range [Minsize,Maxsize], where
Maxsize and Minsize have been heuristically derived.

• the binary roundness constraint Ri, of the connected region i is verified:

Ri =
{

true ρi ∈ [Minρ ,Maxρ ]; ηi ≤ Maxη ; ξi � 0
f alse otherwise (8.14)

where
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ρi = 4π×Ai
Pi

2 is the ratio between the estimated area Ai and the perimeter Pi of
the connected region; the more this value is near 1 the more the shape will
be similar to a circle; the thresholds have been fixed in our experiments in
Maxρ = 1.40 and Minρ = 0.50.

ηi = max
(

Δxi
Δyi

,
Δyi
Δxi

)
is the distortion of the connected region along the axes.

In our experiments the Maxη = 2 was used as threshold.

ξi = Ai
ΔxiΔyi

is the filling factor, the more this parameter is near 1 the more the
area is filled.

In Fig.(8.10) all the involved steps in filtering pipeline are shown. The regions which
satisfy all the constraints are used to extract the red eye patches candidates from the
original input image (Fig.(8.11)). The derived patches are resampled to a fixed size (i.e.,
30×30 pixels) for further classification purposes (see Section 10.4.1).

(a) Input image. (b) Red map.

(c) Closing mask. (d) Remaining candidates.

Figure 8.10 : Red patches extraction from a CCD input image.
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(a) True red eyes.

(b) False positives.

Figure 8.11 : Examples of possible candidates after red patches detection.

8.3 Red Eye Correction
The goal of red eye correction is to modify the image in such a way that it looks as
natural as possible, given the assumption that there are red eye artifacts in the detected
zones (according to the eye detector, the assumption may be given for sure or with a
certain degree of probability).

According to the extent to which the artifact has corrupted the image, the correction
algorithm may need to adjust the hue, brightness, luminance distribution, and/or even the
shape and size of the pupil. Since naturalness of the image is the goal, it is best to use a
minimally invasive technique to correct each case. This also means that a way to distin-
guish the gravity of each artifact (either in the detection phase or at the very beginning of
the correction phase) is to be preferred, in order to be able adapt the correction method on
a case-by-case basis [34].

8.3.1 De-saturation
In the simplest cases, the eye has its regular shape, and the artifact only consists in the
wrong color of the pupil. In these cases, the optimal solution is equally simple: the red
eye is desaturated, that is, its chrominance is (totally or partially) suppressed, while its
luminance is left intact or only slightly lowered (see Fig.(8.12)).

One simple way of desaturating red pupils is to replace each pixel with a gray shade
at 80% of original pixel luminance [16]. An adaptive desaturation may be performed in
the CIELAB color space by stretching the lightness values of the pupil so that its darkest
point becomes black [35]:

L∗
corrected = maxL∗

(maxL∗−minL∗) (L∗ −minL∗)
a∗corrected = 0
b∗corrected = 0

(8.15)
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(a) (b)

Figure 8.12 : In the simplest cases, pupil desaturation produces good results.

Desaturation may suffer from a boundary effect: the transition between the corrected
and uncorrected area may be noticeable and unpleasant. Moreover, some pixels outside
the pupil may be incorrectly considered to be part of the red eye artifact and desaturated.
To overcome these problems, a smoothing (usually Gaussian) mask may be used to mod-
ulate the strength of the correction. For each pixel (i, j) in the red eye artifact area, be
coriginal(i, j) its color in the uncorrected image, ctarget(i, j) the target color of the correc-
tion and m(i, j) the value of the smoothing mask; the final corrected color ccorrected(i, j)
is then:

ccorrected(i, j) = ctarget(i, j) ·m(i, j)+ coriginal(i, j) · (1−m(i, j)) (8.16)

8.3.2 Inpainting

In the hardest cases, a more invasive correction is needed. Often, the distribution of re-
flected light is influenced by the direction of the flash with respect to the face. Sometimes
eyes present the “washed out” effect, where the reflected light spreads off the pupil onto
the iris. In these cases a simple desaturation may yield incorrect and unnatural results
(see Fig.(8.13)).

(a) (b)

Figure 8.13 : When reflected light spreads over the iris, simple desaturation gives unnat-
ural results.

It is then necessary to use a more complex method to reconstruct a realistic image
of the eye. Inpainting may vary from an adaptive recoloring of red pixels to a complete
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redrawing of iris and pupil [36]. The results, however, tend to be unrealistic, up to the
point that they sometimes resemble glass eyes (see Fig.(8.14)1).

Figure 8.14 : Correction of washed-out red eyes with an inpainting technique.

8.3.3 Flash/no-Flash
Another way of obtaining simultaneous detection and correction of red eye artifacts is the
“flash/no-Flash” technique [37], which aims to combine the advantages of taking a non-
flashed picture and a flashed one. The main idea is to take a high-quality flashed picture
and a low-quality non-flashed one, which is used to detect the red eyes and recover the
natural colors of the affected zones (see Fig.(8.15)2).

The method works as follows: two pictures are taken in quick succession. The first
one is shot without flash with high sensitivity, large lens aperture and with a short (for a
non-flashed picture in low light conditions) exposure time. This yields a dark and noisy
picture with small depth of focus, but still suitable to help recover the unaltered colors of
the eyes. The second one is a regular flashed picture, which represents the “real” picture
to correct. It is important that the two pictures are taken with the same focal length and
that very little time elapses in between, in order to prevent misalignment. Search for red
eye artifacts is performed in a luminance-chrominance color space, usually CIELAB. The
a∗ channel is used as a measure of redness. Pixels whose a∗ component exceeds a certain
threshold are considered red. Among such pixels, those whose difference between the
a∗ channel in the flashed image and the same channel in the non-flashed image is larger
than another threshold are marked as possible red eye pixels. Morphological operators
are used to cluster them into blobs, discarding isolated pixels or very narrow regions as
noisy results.

1Corel Paint Shop Pro Red-eye Removal tool.
2Picture taken from Petschnigg et al. [38].
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(a) (b) (c)

Figure 8.15 : Flash/no-Flash technique. (a) Dark non-flashed picture used to recover
the correct color of the eyes; (b) high-quality picture affected by red eye artifacts; (c)
corrected picture.

To correct red eyes using information from the non-flashed picture, it is important to
first compensate differences in color cast between the two images. To this end, for each
of the chroma channels a∗ and b∗, the difference between the two images is averaged
over all non-red eye pixels, thus obtaining a color compensation term. Correction of red
eye artifacts is then performed by substituting the chrominance of affected pixels in the
flashed image with the chrominance of the corresponding pixels in the non-flashed image,
then adding the color compensation term.

The approach is quite simple and theoretically effective, but it presents a number of
drawbacks. First of all, the memory and processing requirements double, since there
are two pictures being taken in place of one. Moreover, the images may suffer from
registration problems, or they may simply be misaligned due to movements of the hand
or of the subjects. This makes this method especially unsuitable for snapshots, where
people may be caught while moving. Another important issue of this approach is uneven
illumination, which is recorded by the non-flashed image but not by the flashed one:
a dark shadow on a red detail (such as the shadow of the nose projected on the lips)
may trigger a false detection, which in turn causes image degradation (especially if the
chrominance of the shaded part is not correctly perceived due to insufficient illumination).

8.4 Correction Side Effects

8.4.1 False Positive
One of the biggest issues in red eye removal is false positives in the detection phase. Cor-
recting a red detail falsely detected as a red eye artifact may have a much more displeasing
effect than leaving an artifact uncorrected. For this reason, getting as few false positives
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as possible is more important than catching as many red eyes as possible. Examples of
image degradation resulting as correction of false positives are shown in Fig.(8.16).

(a) (b) (c)

(d) (e) (f)

Figure 8.16 : Examples of corrections of false positives. Some are barely noticeable,
while others are totally unacceptable.

False positives can be classified according to the severity of the associated degradation
risk, as discussed in Section 8.5.

8.4.2 Partial Detection/Correction

Sometimes eyes are properly detected, but wrongly corrected. In such cases unnatural
corrections appear in the final image. Unnatural corrections, like false positives, are very
undesirable, since they are often more evident and displeasing than untouched red eyes.
One type of unnatural correction is partial correction, caused by an incorrect segmentation
of the red eye zone (possibly due to a difference in hue or luminance between the detected
and the undetected parts).
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(a) (b)

Figure 8.17 : Partial red eye correction, where the brighter area was not considered to
belong to the red pupil.

Noisy Correction

Noisy correction is another kind of unnatural correction. Noisy corrections appear when,
in presence of heavy image noise, red pixels are present around the pupil. In this case, the
detector may assume that such pixels belong to the red eye, and correction may spread
over the iris, giving a strange and unnatural look to the corrected eye.

(a) (b)

Figure 8.18 : Correction of the red pupil extends over the iris, due to red pixels caused
by image noise.

It is worthwhile to note that a strong lossy image compression (e.g., low-bitrate JPEG)
may cause the same phenomenon: however, in the context of automatic algorithms which
act just after the picture is taken, it is reasonable to assume that red eye removal is per-
formed before image compression (to improve red eye detection and to avoid compressing
twice).

Dead Eye

Sometimes red eyes are properly detected, but the corrected image just doesn’t look nat-
ural. This may happen when a wrong luminance distribution, caused by reflected light, is
kept through the correction and is evident in the resulting image. This may also happen
when the color of the corrected pupils isn’t quite natural, possibly because the correction
isn’t strong enough. Finally, the absence of the glint, which may be due to inpainting or
excessive correction, may cause the eye to look “dead”.
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(a) (b)

(c) (d)

Figure 8.19 : In some cases, an unnatural luminance distribution is visible in the corrected
image (b). Sometimes, instead, the eye has a “dead” look, due to the absence of the glint
(d).

8.5 Quality Criteria

The formulation of a quality metric allows to choose the best solution and to adjust pa-
rameters of the algorithm in the best way. To achieve a quality control on red eye removal
algorithm is a challenging issue. Usually the quality of the algorithm is estimated con-
sidering the ratio between corrected eyes and false positives. Obviously this is strictly
related to the nature of the database and the quantity of images. Safonov [21] introduced
an interesting quality metric that permit to remove correlation between quantity and qual-
ity.

First of all the author enumerated all possible cases, further he prioritized them using
Analytic Hierarchy Process (AHP) [39]. Obviously a representative set of photos affected
by red eye defect should be used for calculation of these unwanted cases. Furthermore
good solutions must have low False Negatives (FN) and False Positives (FP), ideally FN
and FP are equal to zero. However the severity of the False Positives differs signifi-
cantly. Almost indistinguishable small FP on foreground is undesirable but sometimes
allowable. Visible FP on foreground especially on human faces and bodies is absolutely
not allowable; such FP artifacts damage photo more than red eyes. Therefore he divided
False Positives in two classes: FPc is the number of critical FP and FPn is the number
non-critical FP.

A similar situation is described for the False Negatives. Several red eye regions are
relatively large and well distinguishable; other regions are small and have low local con-
trast. Detection of the first red eyes is defined as mandatory by Safonov, whereas detection
of the second regions is desirable. Accordingly to such hypotheses he divided all FN in
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two groups: FNm is defined as the number of regions which are mandatory for detection;
FNd is the number of regions which are desirable for detection.

One more unwanted situation is the correction of only one eye from pair. For semi-
automatic approaches it is not so crucial because users have possibility to correct the
second eye manually, but for embedded implementations it is quite unpleasant. NP is then
defined as the number of faces with one corrected eye from pair of red eyes.

The retouching quality is important too. Regarding correction Safonov distinguished
two cases: if the corrected eye looks worse of the original red eye, for example only part
of the red region is corrected, it is an irritating case; it is noticeable that eye has been
corrected but it does not irritate strongly. Accordingly CI is the number of irritating cases
and Cn is the number of situations when retouching is noticeable.

Table 8.1 : Analytic Hierarchy Process Table. Where the coefficients ai, that refer
to the assigned importance values in each row, are used to estimate the Geometric
Mean. The weight is estimated in percentage from the sum of the Geometric Means
(=9.60).

Req. Quality FNm FNd FPc FPn Np Ci Cn
7
√

∏7
i=1 ai Weight %

FNm 1.00 5.00 0.20 5.00 1.00 0.20 5.00 1.26 13.13%
FNd 0.20 1.00 0.33 5.00 0.20 0.20 5.00 0.68 7.08%
FPc 5.00 3.00 1.00 3.00 5.00 5.00 5.00 3.43 35.73%
FPn 0.20 0.20 0.33 1.00 0.20 0.20 1.00 0.34 3.54%
Np 1.00 5.00 0.20 5.00 1.00 1.00 5.00 1.58 16.46%
Ci 5.00 5.00 0.20 5.00 1.00 1.00 5.00 1.99 20.72%
Cn 0.20 0.20 0.20 1.00 0.20 0.20 1.00 0.32 3.33%

As described above Safonov uses prioritization of the factors through AHP table (see
8.1) according to observers opinions. The simplest way for filling the table is: if left
item is more important than top then cell is assigned to 5; if severity of the two items are
the same then cell is set to 1; if top item is more important than left then cell is set to
1/5. Taking into account weights from AHP table, and taking into consideration a global
weight of 10, for all the features, Safonov proposes the following quality criterion:

Qc =
Nt −1.3 ·FNm −0.7 ·FNd −3.6 ·FPc −0.4 ·FPn −1.6 ·Np −2.1 ·Ci −0.3 ·Cn

Nt
(8.17)

where Nt is total number of red eyes.

8.6 Future Trends
With research on red eye removal algorithms continuously advancing, more and more
detection techniques adapt a two-step method, consisting in a first candidate extraction
phase and a subsequent classification phase [10, 20, 21, 40, 41]. The candidate extraction
phase detects the possible red eyes in the picture, and is much more permissive than a
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stand-alone detection technique. This way, it detects a lot of false positives, but misses
very few (if any) red eyes. The classification phase, then, is used to validate or reject each
candidate, according to various features computed over the candidate patch. The problem
of classifying image content is discussed in Chapter 10.

A new field of research which might prove of interest for red eye removal is the dark
flash technology [42], which is a variant of the flash/no-flash technique employing a flash
outside the visible spectrum of the light. This technology, mainly invented to avoid pro-
ducing a disturbing burst of light each time a photograph is taken, might become crucial
for prevention of the red eye artifacts. However, as it was invented very recently, it proba-
bly needs a good amount of development before it reaches acceptable performances over
a wide range of real use cases.
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(Montréal, Canada), pp. 283–287, 2001.

[36] S. Yoo and R.-H. Park, “Red-eye detection and correction using inpainting in dig-
ital photographs,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3,
pp. 1006–1014, 2009.

[37] X.-P. Miao and T. Sim, “Automatic red-eye detection and removal,” in IEEE Interna-
tional Conference on Multimedia and Expo (ICME-04), (Taipei, Taiwan), pp. 1195–
1198, 2004.

[38] G. Petschnigg, R. Szeliski, M. Agrawala, M. F. Cohen, H. Hoppe, and K. Toyama,
“Digital photography with flash and no-flash image pairs,” ACM Transactions on
Graphics, SIGGRAPH 2004 Conference Proceedings, vol. 23, no. 3, pp. 664–672,
2004.

Red Eyes Removal Image Processing for Embedded Devices   215 

 

   



[39] T. L. Saaty, Decision Making for Leaders: The Analytic Hierarchy Process for De-
cisions in a Complex World, vol. 2. Analytic Hierarchy Process Series, 2001. New
Edition.

[40] S. Ioffe, “Red eye detection with machine learning,” in IEEE International Confer-
ence on Image Processing (ICIP-03), vol. 2, (Barcelona, Catalonia, Spain), pp. 871–
874, 2003.

[41] S. Battiato, M. Guarnera, T. Meccio, and G. Messina, “Red eye detection through
bag-of-keypoints classification,” in International Conference on Image Analysis and
Processing (ICIAP-09), pp. 528–537, 2009.

[42] D. Krishnan and R. Fergus, “Dark flash photography,” ACM Transactions on Graph-
ics, SIGGRAPH 2009 Conference Proceedings, vol. 28, no. 3, pp. 1–11, 2009.

216   Image Processing for Embedded Devices Messina and Meccio 

 

 



Video Stabilization
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Abstract: To make a high quality video with a hand-held camera is a very difficult task. The
unwanted movements of our hands typically blur and introduce disturbing jerkiness in the recorded
video. Moreover this problem is amplified when a zoom lens or a digital zoom is used. To solve
this problem many video stabilization techniques have been developed. Optical based approaches
measure camera shake and control the jitter acting on lens or on the CCD/CMOS sensor. On the
other hand digital video stabilization techniques make use only of information drawn from images
and do not need any additional hardware tools. This Chapter describes the algorithms typically
involved in the video stabilization pipeline (motion estimation, unwanted movement detection,
frame warping) highlighting their issues and weak points.

9.1 Introduction
In the last decade multimedia devices (PDAs, mobile phones, etc.) have been dramatically
diffused. Moreover the increasing of their computational performances combined with a
higher storage capability permits them to elaborate large amount of data. These devices,
typically small and thin, usually have video acquisition capability. However making a
stable video with these devices is a very challenging task especially when a zoom lens or
a digital zoom is used. Due to user’s hands shaking, the recorded videos suffer from an-
noying perturbations. The same problem arises in presence of cameras placed on mobile
supports (car, airplane) or fixed cameras operating outdoors. The atmospheric conditions
(e.g., the wind) and the vibrations created by passing vehicles make the recorded video
unstable.

Video stabilization allows to acquire video sequences without disturbing jerkiness,
removing unwanted camera movements. Video quality is then improved and the higher
level algorithms present in the device (segmentation, tracking, recognition) can also work
properly [1,2]. Moreover higher bit rate compression can be obtained from the stabilized
video with respect to the unstable one.

Many stabilization approaches have been developed [3, 4]. Some techniques, by us-
ing mechanical or electronic tools, measure camera shake and then control the jitter act-
ing on lens (OIS - Optical Image Stabilization) or on the CCD/CMOS sensor. In these
approaches both steps are applied before the acquisition avoiding any post-processing
computation and image deformation with the cost of some extra mechanical or optical
devices. OIS has no computational complexity (all the steps are applied in the lens before
the acquisition) but requires high expensive optical systems and enough space around the
camera lens, making the integration in very small and thin systems, like imaging phones,
difficult. On the other hand, digital video stabilization techniques make use only of infor-
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mation retrieved from the analysis of the video to estimate physical camera motion with-
out any additional mechanical apparatus but with some extra computational cost and the
risk of generating image deformation. However, these approaches may be implemented
easily both in real-time and post-processing systems.

9.2 Digital Approaches
Digital video stabilization algorithms, in general, are made up of three stages (Fig.(9.1)):
motion estimation, unwanted movement detection and image warping (see [5] for an al-
ternative scheme). The first stage is devoted to find the parameters relative to the trans-
formation occurred between adjacent frames. Translational, similarity and affine are the
most common adopted motion models. The second step discriminates intentional motion
(e.g., panning) from the unwanted motion (jitter). Typically motion smoothness consid-
erations are taken into account in this process (jitter is a high frequency signal). The final
step consists of the reconstruction of the stabilized image through a proper warping. In
order to do so, captured sequences must be larger than the final produced video.

IMAGE
WARPING

UNWANTED MOVEMENT 
DETECTION 

MOTION
ESTIMATION

Stable FrameUnstable Frame

Figure 9.1 : Video stabilization algorithms are made up of three steps: motion estimation,
unwanted movement detection, image warping.

9.2.1 Motion Estimation

The problem of motion estimation/image registration has been widely investigated and
many solutions have been proposed. The existing approaches can be classified in two
categories: direct methods [6] and feature based methods [7]. The former techniques aim
to recover the unknown parameters through global minimization criteria based on direct
image information. Some assumptions (e.g., brightness constancy) are typically used as
starting point. On the contrary feature based approaches first locate reliable features in
the image and then estimate the motion parameters considering their correspondences.

A lot of interframe transformation models have been used in the video stabilization
field. Due to the real time constraints of the embedded devices many approaches consider
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only a 2D translational model. This model associates a point (xi,yi) in frame In with a
point (x f ,y f ) in frame In+1 with the following transformation:

x f = xi +Tx
y f = yi +Ty

(9.1)

where Tx and Ty are x-axis and y-axis shifts.
Even if the accuracy of these approaches is limited by the simplicity of the model, they

are typically cheap and can be made robust without too much effort. Moreover the com-
pensation step can be trivially implemented (it is a simple cropping) without performing
any kind of interpolation.

Recently, thanks to the increasing computational resources of embedded devices,
more advanced models have been considered. A 2D similarity model has been adopted
as a good trade-off between complexity and computational costs:

x f = xiλ cosθ − yiλ sinθ +Tx
y f = xiλ sinθ + yiλ cosθ +Ty

(9.2)

where λ is the zoom parameter, θ the rotation angle, Tx and Ty respectively x-axis and
y-axis shifts.

This model permits to obtain better performances in terms of accuracy: rotational
jitter is taken into account. Moreover it is also reliable in presence of zooming or forward
walking of the user (scale parameter is not present in a simple 2D translational model).
However, the design of fast and robust approaches is not a trivial task. Finally, motion
compensation has to be performed by means of interpolation.

Whatever the model used, the motion estimation algorithms have to be able to deal
with critical conditions. Very often, in real videos, there are many conditions that de-
grade, if not properly managed, the performances of video stabilization algorithms. In
presence of homogeneous regions (Fig.(9.2(a))), periodic patterns (Fig.(9.2(b))) [8] and
fast illumination changes, the local motion estimators sometimes produce wrong vectors.
Moreover, the movement of the objects in the scene (Fig.(9.3)) can mislead the global
motion vector estimation. Although their vectors are correctly computed they do not de-
scribe camera movements. Finally, zooming and forward walking of the user can create
some problem if they are not taken into account in the motion model (e.g., a translational
motion model).

Block Based Approaches

Many approaches compute frame alignment considering image intensity values. Some
techniques (block based) first divide the image in blocks, typically square, and then search
the corresponding ones in the next frame. Matching is performed within a search window
minimizing a proper error function (Fig.(9.4)).

A lot of video stabilization approaches based on block matching motion estimation
have been developed [9–15]. These approaches typically, taking into account the limited
block size and the high frame rate, assume only a translational motion for each block.
This information, coming from different spatial locations in the frame, is then used to
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(a) (b)

Figure 9.2 : Local motion estimator sometimes fails in presence of homogeneous regions
(a) and periodic pattern (b).

(a) (b)

Figure 9.3 : Although correctly computed, motion vectors corresponding to moving ob-
jects, mouse (a) and soft star (b), do not describe overall frame motion and can deceive
video stabilization algorithms.
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Frame n Frame n+1

Figure 9.4 : Block matching approaches split the image in square blocks (in black) and
search the corresponding ones in the next frame. The matching procedure is performed
within a search window (dark gray).

compute (through Least Squares) the global motion vector (e.g., two translations, one
zoom factor, one rotation in the similarity model). This methodology just filtering out
outliers works pretty well.

In the following Section one of these approaches will be described in detail.

Block Based Approaches: a Case Study

In this Section a block based motion estimation algorithm will be described [14–16]. The
main ideas involved in the described approach (e.g., vectors filtering criteria) have been
used, although in a different way, in many other approaches [9, 11, 17, 18].

The algorithm proposed in [15] consists of several steps. First of all a BMA (Block
Matching Algorithm) module, starting from a pair of consecutive frames, computes the
local motion vectors (through block matching). These vectors are then filtered by Pre-
filtering module through some simple rejection rules based on the goodness of matching,
block homogeneity and vectors similarity with the surrounding blocks. The information
retrieved in the previous iteration is used by the Memory Filter step to perform further fil-
tering. Afterward Robust Estimator estimates the inter-frame transformation parameters
through some Least Squares iterations. Finally some error measures, to be used by Mem-
ory Filter, are computed by Error Matrix Computing module. In Fig.(9.5) an example of
vector filtering is reported. Only reliable motion vectors are retained.

The Pre-filtering module filters the unreliable local motion vectors generated by the
BMA module (which typically computes many wrong motion vectors). These errors usu-
ally depend on the scene content (i.e., homogeneous regions, periodic patterns) and the
number of wrong motion vectors usually increases using an approximate BMA [19, 20].
These algorithms, in order to speed up the matching process, consider only a part of the
search space; hence they are likely to be misled by local minima. To filter out these
vectors, not useful for global motion estimation, the authors apply the following consid-
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(a) (b)

(c) (d)

Figure 9.5 : An example of the filtering process performed by [15]. First, the vectors
produced by BMA (a) are filtered out considering local blocks similarity, local blocks
”activity” and matching effectiveness (b). Even if many wrong vectors have been filtered
out, some still remain (the big object on the right). A second filtering step based on
the blocks history is typically able to solve this kind of problem (c). Finally a robust
estimation process obtains a set of reliable motion vectors (d) used for the inter-frame
parameter estimation.
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erations: the SAD (sum of absolute differences) values have to be low (effective match);
local motion vectors have similar values in their neighbourhood (NS); local motion vec-
tors referred to homogeneous blocks are not reliable (Unhom).

The corresponding indexes are:

SAD =
H−1

∑
h=0

W−1

∑
k=0

|B1(h,k)−B2(h,k)| (9.3)

where B1 and B2 are two corresponding blocks of W ×H size.

NS(i, j) =
1
8

1

∑
k=−1

1

∑
h=−1

|Mvx(i, j)−Mvx(i+ k, j +h)|

+|Mvy(i, j)−Mvy(i+ k, j +h)| (9.4)

where Mvx(i, j) and Mvy(i, j) are the components (along x and y axes respectively) of
local motion vector centered in (i, j).

Unhomx =
H−1

∑
h=0

W−1

∑
k=1

|B(h,k)−B(h,k−1)| (9.5)

Unhomy =
H−1

∑
h=1

W−1

∑
k=0

|B(h,k)−B(h−1,k)| (9.6)

where B is a block of W ×H size.
According to the (9.3), (9.4), (9.5) and (9.6) all the vectors are properly filtered. These

filterings remove all the wrong vectors computed by a generic block matching algorithm.
However, due to moving objects in the scene, there are vectors correctly computed by
BMA (hence not filtered by Pre-filtering module) that must be deleted in order to have
a good inter-frame parameters estimation. If there are big moving objects in the scene,
single image information is not enough to filter out these vectors and the output sequence
will follow the moving object.

In order to make the algorithm robust to such situations, Memory Filter module
uses previous frame information by propagating the computed error through consecutive
frames (wrong regions at frame t are wrong at frame t +1 with a high probability).

All the steps described above have been designed to remove outliers. The remain-
ing vectors are then used to compute interframe transformation parameters. The authors
of [15] use a similarity model (9.2). Considering n motion vectors the following over-
constrained linear system can be obtained:
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A · p = b (9.7)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xi1 −yi1 1 0
...

...
...

...
xin −yin 1 0
yi1 xi1 0 1
...

...
...

...
yin xin 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛
⎜⎜⎝

p1
p2
p3
p4

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x f 1
...

x f n
y f 1

...
y f n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where p1 = λ cosθ , p2 = λ sinθ , p3 = Tx, p4 = Ty.
Vector computation may be affected by noise so it is useful to apply a linear Least

Squares Method on the set of redundant equations to obtain the parameters vector.

p =
(
At ·A)−1 ·At ·b (9.8)

All the similarity model parameters λ ,θ ,Tx,Ty can be easily derived from p vector com-
ponents in the following way:

λ =
√

p2
1 + p2

2 (9.9)

θ = arctan
(

p2

p1

)
(9.10)

Tx = p3 (9.11)
Ty = p4 (9.12)

The whole set of local motion vectors probably includes wrong matches or correct
matches belonging to moving objects in the scene. Obviously, there are some correct
pairs that represent real camera shakes but several points are not related to such informa-
tion. Least Squares Method does not perform well when there is a large portion of outliers
with respect to the total number of vectors. However, outliers can be identified and filtered
out of the estimation process obtaining a better accuracy. In order to cope with outliers the
authors of [15] perform two least squares iteration. The parameters (λ ,θ ,Tx,Ty) obtained
by the first iteration are used to evaluate the goodness of the vectors. Two error measures
have been taken into account: the square Euclidean distance between estimated and mea-
sured motion vectors and the square of the cosine of the angle between them (Fig.(9.6)).
The combination allows obtaining a reliable filtering of the outliers.
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(xi,yi)
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(xs,ys)

(xi,yi) (xf,yf)

(xs,ys)

(xi,yi) (xf,yf)

(a) (b) (c) (d)

Figure 9.6 : Euclidean distance is the same for (a) and (b) but different for (c) and (d).
Conversely the cosine distance is different for (a) and (b) but the same for (c) and (d).
Both distances sometimes fail. However, combining them together the overall system
works pretty well.

(a) (b) (c)

(d) (e) (f)

Figure 9.7 : Original (a, b, c) and stabilized frames (d, e, f) taken from a video with
illumination changes and zoom. The grid is overlaid for better visualization.

Finally Error Matrix Computing computes an error measure (Euclidean distance) to
be used by Memory Filter. Some examples of stabilized videos by [15] have been reported
in Fig.(9.7), Fig.(9.8), Fig.(9.9).

Feature Based Approaches

Feature based techniques allow to directly retrieve the global motion vector through the
analysis of a particular feature.

Censi et al. [21] extract corners like points [22] from the first frame and track them
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(a) (b) (c)

(d) (e) (f)

Figure 9.8 : Original (a, b, c) and stabilized frames (d, e, f) taken from a video with a
big moving object. The grid is overlaid for better visualization.

(a) (b) (c)

(d) (e) (f)

Figure 9.9 : Original (a, b, c) and stabilized frames (d, e, f) taken from a video with
forward walking of the user. The grid is overlaid for better visualization.
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in the following frames. In order to predict local features trajectory, the authors use a
constant velocity Kalman filter. Moreover, to cope with tracker failures or moving objects,
they use a robust rejection rule (X84 [23]) to discard outliers. Finally, the matching
is performed considering a linear projective transformation (homography) between the
corresponding filtered points.

The method proposed in [24] uses SIFT features to estimate interframe motion. First
of all, it discards very long local motion vectors produced by SIFT matching. Subse-
quently it computes the interframe transformation parameters (scale, rotation, x and y
shifts) with Least Squares estimation. In order to deal with outliers and obtain better
performance, they refine the estimated values through a particle filter. The weighting
parameters of the filter are computed through both intensity and edge based similarity
between estimated and reference images.

Jimenez & Salas [25] developed a stabilization algorithm for cameras placed on poles
in outdoor environments. They extract corner-like features from the image and compute
a first rough transformation (homography) via Least Squares. An iterative refining step
based on the Euclidean distance between estimated and measured point position is then
performed. Finally, the quality of the computed homography is evaluated with some
criteria based on spatial distribution of features.

Del Bianco et al. [26] compute reliable points through fast feature-based motion esti-
mation techniques (FFME) [27]. These features are robust with respect to noise, aperture
problem, illumination changes and small variations of 3D viewpoint. Abrupt rotations
and scale variations are not taken into account: due to the high temporal correlation they
are not likely to be in the videos. The authors compute interframe transformation parame-
ters through a combination of RANSAC (RANdom SAmple Consensus) [28] and LMedS
(Least Median of Squares) [29].

Adams et al. [30] propose a real time algorithm for viewfinder alignment. First of all,
they compute four 1-D projections of the edge image. Afterward, aligning the projections
coming from consecutive frames, they obtain a first estimation of the translational shift
parameters. Corner points are then extracted and, through translational information, a
simplified matching is performed. Finally Least Squares compute the four interframe
transformation parameters (rotation, zoom, translations).

9.2.2 Unwanted Movement Detection

One of the main challenges in video stabilization is distinguishing between voluntary and
involuntary movements, and only correcting the latter. Voluntary movements are slower
and more regular, thus they can be filtered out using a High-Pass filter. To this end,
commonly used filters are Infinite Impulse Response filters and Kalman filters.
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Infinite Impulse Response Filters

Infinite Impulse Response (IIR) filters are filters whose response to an impulse is infinite
over time [31]. An IIR filter can be expressed in the general form:

H(z) =
∑L−1

l=0 blz−l

1+∑M
m=1 amz−m

(9.13)

In this representation, a filter is identified by the coefficients bl and am, and designing
one means finding proper coefficients so that the transfer function H(z) satisfies the needed
specifications.

Given a transfer function, there are several configurations in which it can be imple-
mented. One is the direct form-I, defined by the Input/Output (I/O) equation:

y(n) =
L−1

∑
l=0

blx(n− l)−
M

∑
m=1

amy(n−m) (9.14)

For example, the direct form-I equation associated to the following filter:

H(z) =
b0 +b1z−1 +b2z−2

1+a1z−1 +a2z−1 (9.15)

is:

y(n) = b0x(n)+b1x(n−1)+b2x(n−2)−a1y(n−1)−a2y(n−2) (9.16)

An IIR filter can also be represented as two cascaded filters H1(z) and H2(z):

H(z) = H1(z)H2(z) (9.17)

or equivalently:

H(z) = H2(z)H1(z) (9.18)

where:

H1(z) = b0 +b1z−1 +b2z−2 (9.19)

and

H2(z) =
1

1+a1z−1 +a2z−2 (9.20)

IIR filters are sensitive to quantization effects, mainly due to their feedback nature.
When applied to unwanted movement filtering, they can show some oscillations immedi-
ately after the end of a voluntary movement. To resolve this problem, a constraint may
be imposed on the filter, forcing it to stop when the input taps are zeroes. Usually a low-
order filter (e.g., second-order) is chosen for the lower group delay and taps requirements
(increasing performance).
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Kalman Filter

The Kalman filter is a method to recursively solve the problem of discrete data linear
filtering [32, 33]. More specifically, it estimates the state x ∈ Rn of a process governed by
the linear stochastic difference equation:

xk = Axk−1 +Buk +wk−1 (9.21)

through a measurement z ∈ Rm defined as:

zk = Hxk + vk (9.22)

The matrix A represents the way each state affects the subsequent one. The column
vector B represents the relationship between the optional control input u ∈ R and the
process state. The matrix H represents the model which maps the state space into the ob-
servation space. The random variables wk and vk represent, respectively, the process noise
and measurement noise, which are assumed to be normally distributed and independent
from each other:

p(w) ∼= N(0,Q) (9.23)

p(v) ∼= N(0,R) (9.24)

Given the above assumptions, two estimates of the process state at each step k may be
defined: an a priori state estimate x̄k, based on the known information about the process
prior to step k, and an a posteriori state estimate x̃k, based on the measurement zk. Ac-
cording to these definitions, the a priori estimate error is ēk ≡ xk − x̄k and the a posteriori
estimate error is ek ≡ xk − x̃k.

The a priori estimate error covariance is then:

P̄k = E[ēkēT
k ] (9.25)

and the a posteriori estimate error covariance is:

Pk = E[ekeT
k ] (9.26)

To obtain the equations for the Kalman filter, the first step is to define an a posteriori
state estimate as a linear combination of the a priori estimate and a weighted difference
between the actual measurement and a measurement prediction:

x̃k = x̄k +K(zk −Hx̄k) (9.27)

The difference (zk −Hx̄k) is called measurement innovation or residual. It represents
the disparity between the prediction Hx̄k and the actual measurement zk. A zero residual
means perfect agreement between the two. The matrix K represents the gain or blending
factor and is chosen to minimize the a posteriori error covariance (9.26).
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To perform this minimization, it is possible to substitute (9.27) into the definition of
ek and then substitute the resulting formula into (9.26). Differentiating the trace of the
resulting covariance with respect to K, imposing that the resulting derivative be zero, and
then solving for K, the resulting formula is:

Kk = P̄kHT (HP̄kHT +R)−1 (9.28)

The matrix R represents the measurement error covariance. As it becomes smaller,
the gain K increases, thus the residual is weighed more. Specifically, lim

Rk→∞
Kk = H−1

k .

The residual is weighed less, instead, as the a priori estimate error covariance P̄k becomes
closer to zero: lim

P̄k→∞
Kk = 0. In this way, the factor K is used to balance the “trust” between

the actual measurement zk and the predicted measurement Hx̄k.

Discrete Kalman Filter Algorithm

The Kalman filter estimates the evolution of process states over time, obtaining feedback
in the form of (possibly noisy) measurements. The equations governing the filter are
of two kinds: time update equations and measurement update equations. The former
compute the a priori estimate based on the current state, while the latter provide feedback
by including the new measurement to obtain an improved a priori estimate. Together, they
form a set of equations similar to those of a predictor-corrector algorithm for numerical
problems.

The discrete Kalman filter time update equations are:

x̄k = Ax̃k−1 +Buk (9.29)

P̄k = APk−1AT +Q (9.30)

where matrices A and B are from (9.21) and Q is from (9.23).
The discrete Kalman filter measurements update equations are instead:

Kk = P̄kHT (HP̄kHT +R)−1 (9.31)

x̃k = x̄k +K(zk −Hx̄k) (9.32)

Pk = (I −KkH)P̄k (9.33)

(9.31) and (9.32), which were discussed above ((9.28) and (9.27)), respectively com-
pute the Kalman gain and, given the new measurement zk, generate the new a posteriori
estimate. (9.33) calculates the a posteriori estimate error covariance.

After each update cycle, the process is repeated with the previous a posteriori estimate
used to predict the new a priori estimate.
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Motion Filtering with Kalman

As stated above, the Kalman filter has been used for Motion Filtering [34,35]. The global
displacement of the camera along each of the axes can be expressed as (constant velocity
model):

xn = Axn−1 +wn (9.34)
zn = cT xn +un (9.35)

where

A =
(

1 1
0 1

)
c =

(
1
0

)
and zn is the global movement (estimated through a global motion estimator), cT xn is

the voluntary motion, wn and un process and measurement noise terms.
Ideally, at each frame, a corrective displacement of −u pixels is needed in order to

stabilize it. Kalman update equations ((9.29) to (9.33)) are used to filter the motion. The
involuntary motion is estimated as:

u = z− cT xn (9.36)

For reasons related to the size of the acquired frame, a constraint is imposed so that
the magnitude of the correction does not exceed a certain value d. When this is not the
case, the state vector x is updated as follows:

x = x+ sign(u)(|u|−d)Pc(cT Pc)−1 (9.37)

So that the correction respects the constraint.

9.2.3 Frame Warping
After the estimation of the roto-translational parameters, each frame must be corrected in
order to obtain the stabilized sequence. Correction is achieved through frame warping,
which is mathematically defined by a mapping from the space (u,v) of source image
coordinates to the space (x,y) of destination image coordinates.

According to the choice of dependent and independent variables, mappings are di-
vided into forward mappings and inverse mappings [36].

Forward Mapping

Forward mapping expresses destination coordinates as functions of source coordinates:

x = x(u,v); y = y(u,v) (9.38)

In this case, pixels in the source image are directly mapped into the destination image
(Fig.(9.10)).
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Figure 9.10 : Forward mapping with bilinear interpolation. In forward mapping the value
of each pixel in the source image is spread over the nearest pixels in the destination image.

Forward mapping has several drawbacks. Source pixels very seldom map perfectly to
destination pixels, since coordinates may not be integer values, and the shape of the pixels
may not fit due to rotation. This means that the value of each source pixel may need to be
distributed among more destination pixels, which isn’t trivial to do since each destination
pixel, in turn, would receive contributions from more source pixels. Improper distribution
of color contributions in forward mapping may produce undesirable artifacts, like non-
uniform intensity and/or holes, in the destination image. To overcome these problems,
inverse mapping is usually preferred.

Inverse Mapping

Inverse mapping expresses source coordinates as functions of destination coordinates:

u = u(x,y); v = v(x,y) (9.39)

In this case, for each destination pixel, the corresponding coordinates in the source
image are obtained from the mapping (Fig.(9.11)).

As already seen for forward mapping, the obtained coordinates may not map exactly
to pixels in the source image. However, this can be addressed by means of pixel interpo-
lation, since each destination pixel can be computed independently. Nearest Neighbour
interpolation is usually not preferred, as it introduces evident aliasing effects, like jagged
edges and blocky zones. Bilinear Interpolation is preferred, even if it tends to slightly
blur the image.
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Figure 9.11 : Inverse mapping with bilinear interpolation. In inverse mapping the value
of each pixel in the destination image is interpolated from the nearest pixels in the original
image.

9.3 Conclusions
Digital video stabilization allows to acquire video sequences without disturbing jerkiness
by removing from the image sequence the effects caused by unwanted camera move-
ments. In this Chapter the main steps involved in video stabilization systems have been
described in details: motion estimation (block based and feature based approaches), un-
wanted movement detection (IIR and Kalman filter), frame warping (forward and inverse
mapping).
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Abstract: Vision is perhaps the most important sense for humans. Among the different complex
tasks accomplished by the Human Visual System, the categorization is a fundamental process that
allows humans to effectively interpret their surroundings efficiently and rapidly. Computer Vision
researchers are increasingly using algorithms from Machine Learning to build robust and reusable
machine vision systems that act taking into account the visual content of images. Since learning
is a key component of biological vision systems, the design of artificial vision systems that learn
and adapt represent one of the most important trend in modern Computer Vision research. De-
spite the advances in the context of single sensor imaging devices, this technology is still quite far
from the ability of automatically categorize and exploit the visual content of the scene during (or
after) acquisition time. Different constraints should be considered in order to transfer the ability
of inferring the category of a scene in imaging devices domain. Indeed, these devices have limited
resources in terms of memory and computational power, and the image data format change over
time through the imaging pipeline (i.e., from Bayer Pattern at acquisition time to JPEG format
after acquisition time). This Chapter presents Computer Vision and Machine Learning techniques
within the application contexts of scene recognition and red-eye detection. The techniques intro-
duced here could be used in building complex imaging pipeline in which image categorization
(e.g., scene recognition, red-eye detection) is exploited to drive other tasks (e.g., white balance,
red eye removal).

10.1 Introduction

Vision consists of processing images of scenes so as to make explicit what needs to be
known about them [1]. Visual categorization is a fundamental cognitive process that
refers the ability to group visual stimuli into meaningful categories. This aptitude allows
humans to efficiently and rapidly analyze their surroundings. Humans Vision System
(HVS) is able to categorize complex visual scenes at a single glance, despite the number
of objects with different poses, colors, shadows and textures that may be contained in the
scenes. The understanding of the robustness and rapidness of this human ability has been
a focus of investigation for the cognitive sciences community over many years [2]. Sem-
inal studies in computational vision have portrayed scene recognition as a progressive
reconstruction of the input from local measurements (e.g., edges, surfaces) [1]. In con-
trast, some experimental studies have suggested that categorization of real world scenes
may be initiated from the encoding of the global configuration, bypassing most of the
information about local concepts and objects [3]. The ability to exploit the global con-
figuration of a seen scene is achieved by humans through the exploration of holistic cues
(e.g., texture) [4]. Those cues can be processed as single entity over the entire human
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visual field without requiring attention to local features [4, 5]. Recent studies suggested
that humans rely on local information as much as on global information to perform scene
recognition [6, 7]. Clearly, learning is a key component of HVS because it allows the
adaptation of the cortex to learn new tasks [8].

The Human Visual System and related studies of Cognitive Sciences community
have stimulated researches in Computer Vision in building artificial image categoriza-
tion systems. Motivations beyond that of pure scientific curiosity are provided by several
important applications: content-based image retrieval (CBIR) [9], object detection and
recognition [10], semantic organization of image databases [11], place recognition for
robot navigation systems [12], direct marketing on multimedia messaging services do-
main (MMS) [13, 14]. In the context of the current book, a software engine able to auto-
matically infer the category of a scene could be helpful to drive different tasks performed
by single sensor imaging devices during acquisition time (e.g., autofocus, autoexposure,
white balance) [15, 16] or during post acquisition time (e.g., image enhancement, image
coding) [17, 18].

The term categorization (or detection) is used in Computer Vision to designate the task
of between-class classification (e.g., red-eye vs. non-eye) [8]. In other words, categorizing
an image consists of determining those categories (e.g., forest, office, inside city, etc.) to
which an image belongs. Note that an image can belong to multiple categories, and that
image categories can be very broad (e.g., bedroom, highway) or narrow (e.g., inside city,
street) in terms of visual content.

This Chapter introduces basic techniques of Computer Vision and Machine Learning
applied in two contexts of interest for single sensor imaging domain: scene recognition
and red-eyes detection. Specifically, next Section introduces fundamental concepts of Ma-
chine Learning used in Computer Vision for image categorization. Section 10.3 presents a
scene categorization engine useful to discriminate between Natural and Artificial scenes1

as well as between multiple classes of scenes usually acquired by a consumer imaging de-
vice (e.g., Portrait, Landscape and Document) [19]. To this aim a holistic representation
of the scene in the Discrete Cosine Transform domain (fully compatible with the JPEG
format) is exploited. The advised representation is coupled with logistic classifiers to per-
form categorization. In Section 10.4 the problem of discriminating between red-eyes vs.
non-eyes patches is taken into account. The detection of red-eyes is a fundamental task
for automatic red-eyes removal frameworks (see Chapter 8 for more details). The tech-
nique described in Section 10.4 makes use of a two step approach to identify the red-eyes.
First, red-eyes candidates are extracted from the input image by using an image filtering
pipeline. A set of linear discriminant classifiers is then learned on the clustered patches
space, and hence employed to distinguish between red-eyes and non-eyes patches.

1In this Chapter the term Artificial refers to images in which are depicted man-made environments
(cities, buildings, streets, etc.) whereas Natural refers to images in which natural landscapes are represented
(open country, mountain, forest, coast, etc.).
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10.2 Fundamentals and Background
In modern Computer Vision, the categorization problem is typically considered as a su-
pervised learning problem [8]. Given an image as input, the desired output of the machine
vision system is a discrete label indicating the class of the image (e.g., is it a red-eye?).
The systems are trained with a set of image examples previously labeled (called train-
ing set). To this aim, each image I in the training database is represented as a feature
vector f = F(I) through a feature extraction algorithm F (e.g., images are represented as
histograms of oriented gradients). Once the learning phase is completed, each new test
image to be classified is first represented as feature vector and then categorized by using
the previous learned classifiers 2. Dimensional reduction procedures (e.g., Principal Com-
ponent Analysis) are typically adopted to obtain the final feature space in which learning
and categorization phases are performed.

Image categorization engines must be able to generalize on different viewing condi-
tion (e.g., red-eye of different face poses, different light conditions, etc.) as well as on
different examples of the class (e.g., Asian/European shape of eyes). The difficulty to
achieve good generalization depends on the size and composition of the training set as
well as on the variability covered by training samples. For instance, a system trained on
frontal red-eyes would be unable to detect a red-eye from any viewpoint. On the other
hand, if the same machine is trained with a large set of examples covering the relevant
variability, it may be capable of accomplish the task.

Most of the systems for image categorization use set of binary classifiers, one for
each image category Ci. In each of the two-class categorization problem, given an image
I, the problem is to understand if it contains a particular visual class Ci or not, taking into
account the representation of I into the feature space (f = F(I)). From a statistical point
of view, the task of categorization becomes a comparison between two probability scores:

• P(Ci|f): the probability of having Ci given the feature vector f = F(I);

• P(Other|f): the probability of not having Ci given the feature vector f = F(I).

By using the Bayes’ theorem [20], the ratio between the above probabilities can be
written as follows:

P(Ci|f)
P(Other|f) =

P(f|Ci)
P(f|Other)

P(Ci)
P(Other)

(10.1)

The term on the left-hand side of the above equation is called Posterior Ratio, the
first term of right-hand side is called Likelihood Ratio, whereas the second term of right-
hand side is called Prior Ratio. The Likelihood finalizes the probability of observing the
particular instance f = F(I) given some models of the image class under consideration.
There are two different class of techniques used to deal with (10.1) [21]:

2The learning procedure is typically made out of the devices for those devices with limited resources in
terms of memory and computational power.

Image Categorization Image Processing for Embedded Devices   239 

   



• Discriminative Methods: they estimate the posterior probability ratio directly by
finding boundaries of the classes in the feature space. Methods are called “discrim-
inative” when the Posterior Ratio P(Ci|f)

P(Other|f) can be viewed as a function discrimi-
nating directly the target classes for any given instance of images.

• Generative Methods: such techniques learn a model of the joint probability distri-
bution P(f,Ci) = P(f|Ci)P(Ci) and make prediction by using Bayes rule to calculate
the posterior probability P(Ci|f). The training data are used to learn a model for the
likelihood P(f|Ci) and the prior distribution P(Ci). These methods are called “gen-
erative” because the probability distribution P(f|Ci) can be viewed as describing
how to generate random instances of an image conditioned on the target class.

Different researchers faced the difficult task to compare generative and discriminative
learning [22–24]. Discriminative classifiers (i.e., Logistic Classification and Linear Dis-
criminant Analysis [25]) are used in further Sections of this Chapter just for simplicity of
explanation. Similar considerations and results to those presented here can be argued by
using generative classifiers rather than discriminative ones.

To achieve multiclass classification with a set of binary discriminative classifiers, the
adoption of some combination strategies is required [25]:

• The one-against-all approach (Fig.(10.1(a))), builds N binary classifiers (one for
each class). The ith classifier is trained to discriminate samples in class Ci (the
positive class) from those in the remaining classes (the negative class). After the
training phase of all N binary classifiers the corresponding N binary discrimination
functions are evaluated to establish the class of a new sample. In the ideal case,
for a given sample, only one classifier will be positive giving a clear indication of
the class (e.g., points a, b, c in Fig.(10.1(a))). If there is more than one classifier
which is positive, the new sample is assigned to the class for which the distance
to the hyperplane defined by the discriminative function is the largest (e.g., points
d, e, f, g, h, i in Fig.(10.1(a))). If all classifiers are negative, then the new sample
is assigned to the class with smallest distance to the hyperplane defined by the
discriminative function (e.g., points l, m, n in Fig.(10.1(a))).

• The one-against-one approach (Fig.(10.1(b))) builds N(N − 1)/2 classifiers. Each
classifier discriminates between two classes. A sample is assigned using a voting
procedure (e.g., in Fig.(10.1(b)) the points a and g have two votes for class C1 and
one vote for class C2, so these points are assigned to the class C1). Alternatively, the
pairwise classifiers can be arranged in trees, where each node represents a classifier
and the leafs are labeled with the names of the involved classes [26].

10.3 Scene Recognition
Recent studies demonstrate that Image Generation Pipeline (IGP) (See Chapter 1) of sin-
gle sensor imaging devices can be effectively improved by considering scene recognition
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Figure 10.1 : Example of one-against-all and one-against-one approaches. Colored re-
gions indicate training samples of three different classes. Points indicate new samples
classified taking into account the learned decision functions.

engines. In [15] authors describe a powerful imaging pipeline for color constancy in
which a scene recognition engine (i.e., Natural vs. Artificial) is used to drive the en-
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hancement task. The results achieved in [15] make stronger the idea that the content of
a scene (e.g., its category) is useful for IGPs’ tasks performed during acquisition time
(e.g., autoexposure - Chapter 3, autofocus - Chapter 4, white balance - Chapter 5) or just
after acquisition (e.g., image coding - Chapter 11).

Many Computer Vision researchers have proved that holistic approaches can be effi-
ciently used to solve the problem of rapid and automatic scene classification [5,9,27–33].
In particular holistic approaches are able to recognize a scene bypassing the recognition
of the objects inside the scene. Most of the holistic approaches in literature share the same
basic structure that can be schematically summarized as follows:

1. A suitable features space is built (e.g., visual vocabulary [30]). This space must em-
phasize specific image cues such as, for example, corners, oriented edges, textures,
etc.

2. Each image under consideration is projected into this space. A descriptor is built
considering the image as a whole entity (e.g., visual words histogram [30]).

3. Scene classification is obtained by using Pattern Recognition and Machine Learning
algorithms on the new holistic representation of the images (e.g., by using K-nearest
neighbors [30]).

A wide class of techniques based on the above scheme work extracting features on
perceptually uniform color spaces (e.g., CIELab). Typically, filter banks [5, 30, 32] or
local invariant descriptors [28, 29] are employed to capture image cues and to build the
visual vocabulary to be used in a bag of visual words model [34]. An image is considered
as a distribution of visual words and this holistic representation is used for classification
purpose. Eventually local spatial constraints are added in order to capture the spatial
layout of the visual words within images [29, 30, 32].

Alternatively the frequency domain can be a useful and effective source of information
to encode holistically an image for scene recognition. The statistics of natural images on
frequency domain reveal that there are different spectral signatures for different image
categories [10]. Although these studies have demonstrated that frequency domain can
be useful to discriminate between different classes scenes, just a few researchers have
exploited such domain for scene recognition tasks [35–37]. A recent review in the field
can be found in [33].

This Section describes a scene recognition framework in which the holistic repre-
sentation of the scene is built exploiting features extracted on Discrete Cosine Transform
domain. An early version of this work has been published in [19]. Logistic classifiers [25]
are trained and then used to infer the category of a new observed scene. A one-against-all
method is used to perform multiclass classification (see Section 10.2). The proposed ap-
proach is fully compatible with JPEG format and may be easily employed in single sensor
imaging devices domain.

Images are represented as histograms of oriented blocks [11] coupled with statistical
weights to evaluate how important is an orientation in discriminating the classes under
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Figure 10.3 : Local dominant orientation extraction process.

consideration [38]. Two local features are extracted and used to represent each 8×8 spa-
tial block belonging to a given image (Fig.(10.2)): the dominant orientation of the block
and its strength. These two local information are extracted, for each block, directly on
compressed domain considering the corresponding 8× 8 DCT blocks [39]. Specifically,
the ratio between the sum of the DCT coefficients corresponding to the horizontal and
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Figure 10.4 : The overall AC energy contained on a 8× 8 DCT block is related to the
strength of the local dominant orientation of the corresponding spatial block. Three 8×8
spatial blocks with same local dominant orientation and different strength are represented
in the left column. The strengths of the blocks (in increasing order from top to bottom) are
represented in the middle. The AC energy of each block extracted from DCT domain is
reported in the right column. The AC energy increases from top to bottom in accordance
with the strengths of the corresponding blocks.

vertical frequencies of the 8×8 DCT basis functions, are used to establish the tangent of
the local dominant orientation angle of a spatial block (Fig.(10.3)). The overall AC energy
contained in the 8× 8 DCT block is related to the strength of the local dominant orien-
tation (LDO) of the spatial block (Fig.(10.4)). The extracted local features are then used
to build a holistic representation of the image as a distribution of local dominant orienta-
tions. This representation is coupled with TF-IDF weighting scheme [38] to statistically
capture the most discriminative orientations between classes of scenes.

In the context of single sensor imaging devices, the primary contributions of the afore-
mentioned approach can be summarized as follows:

• It is directly implemented in the DCT domain and compliant with the JPEG format.
The full image decoding is not required to extract the features used to represent
the scene. Local features are picked-out by using simple operations in compressed
DCT domain. Bank of filters or other feature extraction process are not required.

• The global representation of the scene is obtained grouping together the extracted
local information. A very compact low dimensional vector is used to describe the
content of a scene.
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• No extra information (e.g., visual vocabulary) has to be stored in memory to build
and manage the holistic representation of a scene.

• A simple discriminative model is used to perform classification. A very compact
low dimensional vector of parameters is maintained to perform classification. The
classifier can be trained out of the device (e.g., just considering a dataset properly
collected). The learned parameters of the classification model may be stored into
the device and used to classify a new observed scene through a simple decision
function.

• Despite the proposed approach works on compressed and constrained domain the
classification rate closely match current state-of-the-art methods.

10.3.1 Histograms of Oriented DCT Blocks
This Section introduces the holistic representation used in the aforementioned scene recog-
nition framework. For sake of simplicity of explanation, the task of Natural vs. Artificial
classification is taken into account to introduce the holistic representation of the scene.
The same representation is used to discriminate between the following classes of scenes:

• Natural, Artificial;

• Open, Closed;

• Indoor, Outdoor;

• Document, Landscape, Portraits.

As well known, the power spectrum of an image contains enough relevant information
about its global structure [11, 37, 40]. Different studies pointed out that information ex-
tracted in frequency domain can be holistically encoded to represent the scene for natural-
ness classification. In this specific case, the discrimination between Natural vs Artificial
scenes is based on the fact that straight horizontal and vertical lines dominate man-made
structures whereas most natural landscapes have textured zones and undulating contours.
Therefore, scenes having a distribution of edges (in spatial domain) commonly found in
natural landscapes would have a high degree of naturalness whereas scenes with distribu-
tion of edges (in spatial domain) biased toward vertical and horizontal orientations would
have a low degree of naturalness [41]. These considerations lead to claim that the distri-
bution of edges’ orientations within an image can help to understand the naturalness of
the scene and hence may be used for Natural vs. Artificial classification.

To discriminate between Natural and Artificial scenes a global representation of the
image is built after estimating the local dominant orientation and strength of each 8× 8
block belonging to the grayscale image. Specifically, this local information is obtained
considering each block within an image encoded in the DCT domain.

Shen and Sethi [39] proposed the first image processing approach to extract edge
directly on DCT domain. The method can be used to extract edge information during
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the JPEG encoding of the image (or after) directly in the encoded compressed image
domain. Specifically, during JPEG encoding, the image is partitioned in 8 × 8 pixel-
by-pixel non overlapped blocks transformed by using DCT basis. Each block is then
transformed taking into account the 8×8 DCT basis to produce the 8×8 coefficient array
where the (0,0) element (top-left) is the DC (zero-frequency) component and entries with
increasing vertical and horizontal index values represent higher vertical and horizontal
spatial frequencies. For each block Bk(x,y) in the original image, the corresponding DCT
coefficients Dk(u,v) are generated by using the following equation:

Dk(u,v) = α(u)α(v)
7

∑
x=0

7

∑
y=0

Bk(x,y)cos
(

π(2x+1)u
16

)
cos

(
π(2y+1)v

16

)
(10.2)

where

α( f ) =

⎧⎨
⎩

1√
8

f = 0,√
1
4 1 ≤ f ≤ 7.

(10.3)

From this representation the following equation can be used to obtain the edge orien-
tation of Bk(x,y) [39]:

tan(θk) = ∑7
u=1 Dk(u,0)

∑7
v=1 Dk(0,v)

(10.4)

Further investigation of Ladret et al. [11] demonstrated that a better estimate of the
orientation in terms of stability (for both positive and negative orientations), lower offset
effects and accuracy, can be obtained by using the following equation:

tan(θk) =
∑7

u=1;u=u+2 Dk(u,0)

∑7
v=1;v=v+2 Dk(0,v)

(10.5)

It is important to note that in (10.4) and (10.5) the local dominant orientation of each
8×8 image block is computed directly on compressed domain.

The local variance of each 8×8 DCT block (the AC energy) is a good indicator of the
strength of the edge whose orientation has been evaluated by using (10.5) (Fig.(10.4)).
The strength can properly weight each edge according to its importance. To evaluate
the strength of each block the overall AC energy is computed by using the following
formula [39]:

Ak = Hk +Vk +
7

∑
u=1

7

∑
v=1

D2
k(u,v) (10.6)

Hk =
7

∑
u=1

D2
k(u,0) (10.7)

Vk =
7

∑
v=1

D2
k(0,v) (10.8)
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The 32x32 Local Dominant Orientations The Original Image (256x256)

The 32x32 AC Energy Matrix

(a) A Natural scene.

The 32x32 Local Dominant Orientations The Original Image (256x256)

The 32x32 AC Energy Matrix

(b) An Artificial scene.

Figure 10.5 : Local dominant orientations and the corresponding AC energies. The local
dominant orientation of each 8× 8 block is shown on the left of the Natural/Artificial
image, whereas the corresponding AC energies are shown bottom-right.

Fig.(10.5(a)) illustrates a Natural scene, the local dominant orientation of each block
estimated by using (10.5) and the relative strength (AC Energy) estimated with (10.6).
Fig.(10.5(b)) illustrates an Artificial scene, the local dominant orientation of each block
estimated by using (10.5) and the relative strength estimated with (10.6). The arrows
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lengths on the local dominant orientations plot are proportional to the norm of the vector
with components respectively equal to the total horizontal energy (10.7) and the total
vertical energy (10.8) of each 8×8 DCT block.

As shown in Fig.(10.5(a)) and Fig.(10.5(b)), the Natural scenes present many hori-
zontal edges (e.g., due the horizon in the scene) whereas in the Artificial scenes the verti-
cal edges are prominent (e.g., due the buildings in the scene). The strength (AC Energy)
of each block indicates how much the corresponding local dominant orientation should
be taken into account. The strength (AC Energy) corresponding to homogeneous or tex-
turized image blocks (e.g., sky blocks, sea blocks, clouds blocks, etc.) is lower than the
corresponding strength (AC Energy) of edge image blocks (e.g., horizon blocks).

A holistic representation of the scene can be built just analyzing the distribution of the
local dominant orientations weighted taking into account their corresponding strengths
[11]. Specifically, for each grayscale image I coded with K blocks in DCT8×8 domain, let
{θ1, . . . ,θK} the K local dominant orientations extracted by using (10.5) and let {A1, . . . ,AK}
the K AC energies extracted by using (10.6).
The d-dimensional features vector LDO(DCT8×8(I)) = [ fθ̂1

, fθ̂2
, . . . , fθ̂d

]T used to repre-
sent the whole image I is obtained as follows:

fθ̂i
=

N(θ̂i)
SN

, ∀i ∈ {1, . . . ,d} (10.9)

where:

N(θ̂i) = ∑Ak∈Θi log(Ak);

θ̂i ∈ [−90,90], θ̂1 = −90, θ̂i+1 = θ̂i + 180
d , θ̂d+1 = 90;

Θi = {Ak | θ̂i < θk ≤ θ̂i+1, Ak > ζ , k = 1 . . .K};

SN = ∑d
n=1 N(θ̂n) is the normalization constant;

d is the number of orientation bins;

ζ is a threshold useful to discard the marginal orientations.

The LDO representation has been coupled with the TF-IDF weighting scheme [38]
to enhance the most discriminative orientations between different classes. The final TF-
IDF-LDO descriptor has been used as feature vector for image categorization.

To effectively build the TF-IDF-LDO of an image I, the number of bins to be consid-
ered (the parameter d) and the threshold used to consider only the significant orientations
(the parameter ζ ) must be fixed. To achieve this aim the benchmark algorithm K-nearest
neighbors (KNN) and the leave-one-out cross validation procedure [25] are employed.
When the best representation parameters have been fixed, these are used in training the
logistic classification model [25] employed for the final classification. The experiments
pointed out that the best performances are obtained with d = 32 and ζ equal to 10% of
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Figure 10.6 : The mean local dominant orientations distributions of Natural and Artificial
Scenes.

Mountain Coast Forest Open�Country

Figure 10.7 : Some examples of Natural scenes used to compute the average local dom-
inant orientations distributions reported in Fig.(10.6(a)).

the maximal Ak extracted from the image I under consideration during the representation
phase.

Fig.(10.6) reports the mean local dominant orientations distributions of Natural and
Artificial scenes. The distributions in Fig.(10.6(a)) have been computed averaging the TF-
IDF-LDO representations of about 1400 Natural scenes (Fig.(10.7)): 410 Open County,
328 Forest, 360 Coast, 374 Mountain. The distributions in Fig.(10.6(b)) have been
computed averaging the TF-IDF-LDO representations of about 3200 Artificial scenes
(Fig.(10.8)): 216 Bedroom, 241 Suburban, 311 Industrial, 210 Kitchen, 289 Living Room,
260 Highway, 308 Inside City, 292 Street, 356 Tall Building, 215 Office, 315 Store. All
images are in gray scale and encoded in JPEG format with different resolution and com-
pression ratio. This dataset has been used to perform the Natural vs. Artificial classifica-
tion experiments.

The Natural vs. Artificial classification engine is based on the differences concerning
the “shape” of the TF-IDF-LDO distributions (Fig.(10.6)). This representation has been
demonstrated also useful to discriminate between other classes of scenes.
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Tall�Building Highway Store Living�Room

Inside�CityStreetKitchenIndustrial

Bedroom Office Suburban

Figure 10.8 : Some examples of Artificial scenes used to compute the average local
dominant orientations distributions reported in Fig.(10.6(b)).

10.3.2 Experimental Settings and Results

To effectively build the TF-IDF-LDO of an image I, the number of bins to be consid-
ered (the parameter d) and the threshold used to take into account only the significant
orientations (the parameter ζ ) must be fixed. In our experiments, we used a K-nearest
neighbors [25] to fix the best representation parameters, whereas a logistic classification
model [25] is employed as final framework for classification.

All experiments that involve K-nearest neighbors for class discrimination have been
performed by using of the leave-one-out cross validation procedure (LOOCV) [25]. Each
run of LOOCV involved a single image sample as test to be classified, and the remaining
image samples as the training data. The final classification results are obtained averaging
on the results of all the LOOCV runs. The following parameters have been involved into
the experiments: the number d of orientation bins, the strength threshold ζ , the similarity
measure S used by KNN, and the number of neighbors K used in the nearest neighbor rule.
Each experiment was related to the evaluation of the classification performance by using
a point into the parameter space d×ζ ×S×K (properly sampled in a grid of 960 points).
The similarity measure S used in the K-nearest neighbors classifier has a clear impact in
the classification results. In the experiments performed to fix representation parameters,
different similarity measures have been tested. Let L(1) = TF-IDF-LDO(DCT8×8(I(1))) =
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[ f (1)
θ̂1

, f (1)
θ̂2

, . . . , f (1)
θ̂d

]T and L(2) = TF-IDF-LDO(DCT8×8(I(2))) = [ f (2)
θ̂1

, f (2)
θ̂2

, . . . , f (2)
θ̂d

]T the

local dominant orientations distributions of two different images I(1) and I(2). The follow-
ing similarity measures have been considered: Absolute Difference (10.10), metric based
on Bhattacharyya Coefficient (10.11), χ2 Distance (10.12), Jeffrey Divergence (10.13),
Pearson Correlation Coefficient (10.14), Square Difference Distance (10.15), Weighted
Euclidean Distance (10.16). Among the similarity measures used in these experiments,
the Euclidean distance on the real Fourier coefficient was considered as previously sug-
gested in [11]. In this last case, the local dominant distribution is treated as a discrete
signal and the Fourier transformation is employed. The Euclidean distance between the
first two Fourier components is used to establish the similarity between scenes. More
formally in the following list all similarity measures are pointed out:

S(L(1),L(2)) =
d

∑
n=1

| f (1)
θ̂n

− f (2)
θ̂n

| (10.10)

S(L(1),L(2)) =

√√√√1−
d

∑
n=1

√
f (1)
θ̂n

∗ f (2)
θ̂n

(10.11)

S(L(1),L(2)) =
d

∑
n=1

( f (1)
θ̂n

−mi)2

mi
(10.12)

where mi =
f (1)
θ̂n

+ f (2)
θ̂n

2 ;

S(L(1),L(2)) =
d

∑
n=1

⎧⎨
⎩
⎡
⎣ f 1

θ̂n
∗ log

⎛
⎝ f (1)

θ̂n

mi

⎞
⎠
⎤
⎦+

⎡
⎣ f (2)

θ̂n
∗ log

⎛
⎝ f (2)

θ̂n

mi

⎞
⎠
⎤
⎦
⎫⎬
⎭ (10.13)

where mi =
f (1)
θ̂n

+ f (2)
θ̂n

2 ;

S(L(1),L(2)) = 1−
∑d

n=1

(
f (1)
θ̂n

−μ(1)

σ (1) ∗ f (2)
θ̂n

−μ(2)

σ (2)

)

d
(10.14)

where μ(1) and σ (1) are respectively mean and standard deviation of the vector L(1),
whereas μ(2) and σ (2) are respectively mean and standard deviation of the vector L(2);

S(L(1),L(2)) =
d

∑
n=1

( f (1)
θ̂n

− f (2)
θ̂n

)2 (10.15)

S(L(1),L(2)) =
d

∑
n=1

wn ∗ ( f (1)
θ̂n

− f (2)
θ̂n

)2 (10.16)
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where wn = f (1)
θ̂n

if f (1)
θ̂n

�= 0, wn = 1 otherwise.
The experiments pointed out that the best parameters to be used when the proposed

holistic representation is coupled with KNN are the following: d=32, ζ equal to 10% of
the maximal Ak extracted from the image I under consideration, the similarity measure
based on Bhattacharyya Coefficient, and K=3. Results for Natural vs Artificial classifica-
tion are reported in Table 10.1 (the x-axis represents the inferred classes while the y-axis
represents the ground-truth category).

Table 10.1 : Natural vs Artificial classification result obtained employing KNN. The
average classification rates for the Natural and Artificial classes are listed along the
diagonal. The average accuracy is 94.10%.

Natural Artificial
Natural 94.15 5.85

Artificial 5.94 94.06

Good results are obtained when K-nearest neighbors (KNN) is used as classifier, but
its implementation in domain with limited time, space and computational power resources
(e.g., digital camera, mobile phone, etc.) isn’t straightforward. Indeed, K-nearest neigh-
bor is a memory based classifier3 whose computational costs and space resources exceed
the constrained domain of single sensor imaging devices. To overcome these difficulties
we propose to use a logistic model for classification purpose [25]. The basic assumption
is that the difference between the logarithms of the class-conditional density functions is
linear in the vectors f representing the images through TF-IDF-LDO:

log(P(f|Artificial))− log(P(f|Natural)) = w0 +w1 fθ̂1
+ · · ·+wd fθ̂d

(10.17)

Such basic assumption is equivalent to [25]:

P(Natural|f) =
1

1+ e
(w′

0+w1 fθ̂1
+···+wd fθ̂d

)
(10.18)

P(Arti f icial|f) =
e
(w

′
0+w1 fθ̂1

+···+wd fθ̂d
)

1+ e
(w′

0+w1 fθ̂1
+···+wd fθ̂d

)
(10.19)

where w
′
0 = w0 + log

(
P(Artificial)
P(Natural)

)
. In the experiments equiprobability is assumed for the

priors P(Natural) and P(Artificial), hence w
′
0 = w0.

It is interesting to note that the decision about discrimination between Natural vs.
Artificial scenes is determined solely by the following linear function:

g(f) = w
′
0 +w1 fθ̂1

+ · · ·+wd fθ̂d
(10.20)

3e.g., the training set must be taken in memory for classification purpose.

252   Image Processing for Embedded Devices Farinella and Ravi 

   



Specifically, a new observation is assigned to the class Natural if the value of the function
(10.20) is negative, otherwise is assigned to the class Artificial. Hence, after learning the
parameters of the logistic classification model (out of the devices), a simple evaluation
of a linear function can be used for classification purpose; this leads to overcome the
difficulties due to the constrained domain of consumer imaging devices.

The experiments performed troughs KNN pointed out that the best representation
of the scene is encoded in a 32-dimensional vector. For the logistic classifiers, a 33-
dimensional vector relative to the parameters has been learned. The parameters may
be estimated (e.g., out of the devices) using a classic Maximum Likelihood Estimation
(MLE) approach [25]. More specifically, to learn the parameters of the logistic model the
likelihood function is maximized using all the training observation. The function to be
maximized is the following:

log(L) = ∑
f∈Artificial

g(f)− ∑
all f

log [1+ exp(g(f))] (10.21)

The gradient of (10.21) with respect to the involved parameters is

∂ log(L)
∂w′

0
= |Arti f icial|− ∑

all f
P(Artificial|f) (10.22)

∂ log(L)
∂w j

= ∑
f∈Artificial

fθ̂ j
− ∑

all f
fθ̂ j

P(Artificial|f), j = 1, . . . ,d (10.23)

Taking into account the likelihood (10.21) and its derivative (10.22 and 10.23), an iter-
ative optimization procedure can be used to obtain a set of parameter values ŵ

′
0, . . . , ŵd for

which the function log(L) reaches a local maximum. The learning rules are the following
(steepest gradient ascent in the likelihood):

w
′[t+1]
0 = w

′[t]
0 +η

∂ log(L)

∂w
′[t]
0

(10.24)

w[t+1]
j = w[t]

j +η
∂ log(L)

∂w[t]
j

, j = 1, . . . ,d (10.25)

where η is a learning rate. These are batch learning rules, since all samples in the training
set are considered at once4. In the experiments we use η = 0.1 and the initial starting
values of logistic classification parameters are chosen randomly in [-0.01, 0.01]. The
parameters are iteratively upgraded through the learning rules above until convergence in
order to obtain the final parameters ŵ

′
0, . . . , ŵd to be used in the classification phase.

4For real-time learning and adaptation applications, an online learning rules considering one data sample
at a time may be used.
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Once the learning phase is completed, a new image can be assigned to a class ĉ ∈{Natural,
Artificial} according to a maximum a posteriori (MAP) rule:

ĉ = argmax
c

P(c|f, ŵ′
0, . . . , ŵd) (10.26)

All experiments in which a logistic classifier is involved to discriminate between
classes of scenes are repeated ten times with different randomly selected training (50%)
and test images (50%). Image representation parameters are fixed by taking into ac-
count the experiments performed with KNN approach. The confusion matrices [42] were
recorded at each run for evaluation purpose. The classification results are obtained aver-
aging on the results of all ten runs.

In Table 10.2 the classification results obtained using the logistic classification model
are reported. The average accuracy is 93.01%. Although the recognition results are about
1.09% less than the results obtained by using KNN (see Table 10.1 to compare KNN vs.
Logistic results), one should not overlook that the proposed method outperforms KNN
in constrained domain (e.g., limited resources in term of space, time and computational
power).

Table 10.2 : Confusion matrix obtained through logistic classification. The average
classification rates for the Natural and Artificial classes are listed along the diagonal.
The average accuracy is 93.01%.

Natural Artificial
Natural 93.03 6.97

Artificial 6.70 93.30

Classification Performances on Other Classes of Scenes

The proposed classification framework can be applied to other classes of scene. This
Section shows preliminary results obtained by applying the proposed approach on other
classes of scene: Open vs. Closed, Indoor vs. Outdoor. These classes may be useful
to properly address some parameters of IGP pipeline employed within imaging devices
[15, 43]. Moreover, this Section presents a simple extension of the proposed method to
work with multiple classes. Three classes of scenes that are usually acquired by a digital
camera or a mobile phone are considered: Landscape, Document and Portraits. All the
experiments of this Section have been done employing the logistic classification model
with the same parameters pointed out by the experiments described in previous Sections.

First, let us examine the performance of the proposed approach to discriminate Open
vs. Closed scenes. A Closed scene is a scene with small perceived depth, whereas an
Open scene is a scene with big perceived depth. The database used for Open vs. Closed
classification is composed of eight basic scene categories collected by the authors of [40]:
Coast (360 images), Open Country (410 images), Street (292 images), Highway (260
images), Forest (328 images), Mountain (374 images), Tall Building (356 images), City
(308 images). The first four basic classes have been considered as Open scenes (1322
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images), whereas the other classes have been considered Closed scenes (1366 images).
Strongly ambiguous scenes in term of openness were discarded (e.g., street scenes with
no perceived depth). Images were considered in grayscale, even when color images are
available. Some examples of Open and Closed scenes used in the experiments are given
in Fig.(10.9). Tests on this dataset are repeated twenty times with different randomly
selected training (75%) and test (25%) images. The parameters involved in the logistic
classification model have been learned at each run from the training set through classic
MLE procedure (see previous Section) and the confusion matrices were recorded at each
run. The final Open vs. Closed classification results are obtained averaging on the results
of all twenty runs.

Mountain

Coast

Forest

Open�Country

Inside�City

Street

Building

Highway

O
pe

n
Cl
os
ed

Figure 10.9 : Some examples of Open and Closed scenes used to compute the average
local dominant orientations distributions reported in Fig.(10.10).

Fig.(10.10) reports the polar version of the mean local dominant orientations distribu-
tions of Open and Closed scenes. The distributions in Fig.(10.10(a)) have been computed
averaging the TF-IDF-LDO representations of the Open scenes of the dataset described
above. The distributions in Fig.(10.10(b)) have been computed averaging the TF-IDF-
LDO representations of the Closed scenes of the dataset described above.

In Table 10.3 the classification results obtained on Open vs. Closed classification are
reported (90.33% Accuracy).

Next, let us examine the performances of In vs. Out classification. The database used
for these experiments is composed of nine basic scene categories collected in [27, 40]:
Coast (360 images), Highway (260 images), Mountain (374 images), Open Country (410
images), Street (292 images), Bedroom (216 images), Kitchen (210 images), Living Room
(289 images), Office (215 images). The first five basic classes have been considered as
Outdoor scenes (1669 images), whereas the other classes have been considered Indoor
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Figure 10.10 : The polar version of the mean local dominant orientations distributions of
Open and Closed scenes.

Table 10.3 : Open vs. Closed classification results. The average classification rates
for the Open and Closed classes are listed along the diagonal. The average accuracy
is 90.33%.

Open Closed
Open 89.56 10.44

Closed 8.65 91.35

scenes (930 images). Some examples of Indoor and Outdoor scenes, used in the experi-
ments, are given in Fig.(10.11). Also in this case the images were considered in grayscale,
even when color images are available. The experiments on this dataset are repeated twenty
times with different randomly selected training (75%) and test (25%) images. The param-
eters involved in the logistic classification model have been learned at each run from the
training set through classic MLE procedure (see previous Section) and the confusion ma-
trices were recorded at each run. The final Indoor vs. Outdoor classification results are
obtained averaging on the results of all twenty runs.

Fig.(10.12) reports the polar version of the mean local dominant orientations distribu-
tions of Outdoor and Indoor scenes. The distributions in Fig.(10.12(a)) have been com-
puted averaging the TF-IDF-LDO representations of the Outdoor scenes of the dataset
described above. The distributions in Fig.(10.12(b)) have been computed averaging the
TF-IDF-LDO representations of the Indoor scenes of the dataset described above. Also
in this case the “shapes” of the mean TF-IDF-LDOs of the two involved classes are quite
different.

In Table 10.4 the classification results obtained on Outdoor vs. Indoor classification
are reported (90.89% Accuracy).

Finally, let us examine a simple extension of the proposed approach to work with
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Figure 10.11 : Some examples of Outdoor and Indoor scenes used to compute the aver-
age local dominant orientations distributions reported in Fig.(10.12).
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Figure 10.12 : The polar version of the mean local dominant orientations distributions of
Outdoor and Indoor scenes.

Table 10.4 : Outdoor vs. Indoor classification results. The average classification
rates for the Outdoor and Indoor classes are listed along the diagonal. The average
accuracy is 90.89%.

Outdoor Indoor
Outdoor 90.39 9.61
Indoor 8.60 91.40

multiple classes. Specifically, we are interested in discriminating between three classes:
Document, Landscape, Portrait. Scenes belonging to these three classes are usually ac-
quired by a consumer imaging device. The database used in the experiments is composed
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Figure 10.13 : Some examples of Document, Landscape and Portrait scenes used to
compute the average local dominant orientations distributions reported in Fig.(10.15).

by 1532 colour images. In particular, 382 images are Landscape scenes, 874 images are
Document scenes and 276 images are Portraits scenes. Some examples of images that
have been used in our experiments are depicted in Fig.(10.13). All the images were pre-
processed to be considered in 256×256 grayscale thumbnail version (Fig.(10.14)). The
32×32 DCT blocks of each thumbnail have been used to build the TF-IDF-LDO repre-
sentation as described in Section 10.3.1. Also in this case we used d=32 orientation for
the TF-IDF-LDO representation, and a strength threshold ζ equal to 10% of the maximal
Ak extracted from the image I under consideration.
Fig.(10.15) reports the polar version of the mean local dominant orientations distribu-
tions of the three involved classes of scenes. The distributions in Fig.(10.15) have been
computed averaging the TF-IDF-LDO representations of the Document, Landscape and
Portrait scenes of the dataset. Also in this case the “shapes” of the mean TF-IDF-LDOs
are quite different.

To perform our experiments on the N = 3 classes of scenes mentioned above, we
employed the one-against-all method [25]. This method constructs N binary classifiers
(e.g., N Binary Logistic Classifiers). The ith classifier is trained to discriminate samples
in class Ci (the positive class) from those in the remaining classes (the negative class).
Thus, using a logistic model as binary classifier, after the training phase of all N binary
classifiers through classic MLE procedure, the corresponding N binary discrimination
functions (10.27) are evaluated to establish the class of a new sample f.

gi(f) = w
′
i,0 +wi,1 fθ̂1

+ · · ·+wi,d fθ̂d
, i=1,. . . ,N (10.27)

Ideally, for a given sample f, the quantity gi(f) will be positive for one value of n and
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Figure 10.14 : Landscape, Document and Portraits images were preprocessed and re-
sized to work with 256×256 grayscale thumbnail version.

negative for the reminder, giving a clear indication of the class. If there is more than one
class for which the quantity gi(f) is positive, the f sample may be assigned to the class
ĉ ∈ {C1,C2, . . . ,CN} for which the distance to the hyperplane is the largest (10.28).

ĉ = argmax
i

(
gi(f)
||wi||

)
(10.28)

If all values gi(f) are negative, then the f sample is assigned to the class with smallest
distance to the hyperplane (10.29).

ĉ = argmin
i

(
gi(f)
||wi||

)
(10.29)

The experiments on the dataset containing Landscape, Document and Portraits scenes
have been repeated twenty times with different randomly selected training (50%) and
test (50%) images. The parameters involved in the multi-class logistic model have been
learned at each run from the training set and the confusion matrices were recorded at each
run. The final classification results are obtained averaging on the results of all twenty
runs. Table 10.5 reports the confusion matrix obtained averaging on the results of all
twenty runs. The average accuracy is 87.62%.

10.4 Red Eyes Detection
Since the large diffusion of mobile devices with embedded camera and flashgun, the red-
eyes artifacts have de-facto become a critical problem. Different methods have been
proposed in literature [44–46] to detect and remove red-eyes artifacts (see Chapter 8 for
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Figure 10.15 : The polar version of the mean local dominant orientations distributions of
Document, Landscape and Portrait scenes.

Table 10.5 : Classification results obtained applying the proposed approach on the
three classes usually acquired by an imaging device: Portrait, Landscape and Docu-
ment. The average classification rates for the three classes are listed along the diag-
onal. The average accuracy is 87.62%.

Portrait Landscape Document
Portrait 94.15 2.05 3.8

Landscape 4.34 87.00 8.66
Document 10.18 8.09 81.73

more details). In this Section a two stage algorithm for red-eye detection is presented.
The first stage is mainly based on the technique proposed in [47] taking into account a
different color space and only a subset of the constraints about the roundness of the red-
eyes regions. Candidate red-eye patches are extracted from the input image through an
image filtering pipeline as detailed in Chapter 8. In the second stage a multi-modally
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classifier, obtained by using clustering and Linear Discriminant Analysis (LDA), is used
to distinguish between true red-eye patches vs. other patches [44]. The proposed cluster-
based LDA is used to deal with the multi-modally nature of the input space.

10.4.1 Red Patch Categorization
The main aim of the categorization stage is the elimination of false positive red-eyes in
the set of patches obtained performing the filtering pipeline described in Chapter 8.

At this stage the problem become a binary classification problem. In particular, the
aim is to discriminate between eyes vs. other patches. Among the discriminative methods
successfully used for binary classification, Linear Discriminant Analysis (LDA) [25] is
probably the most widely used. LDA assumes a prior knowledge about the classes of the
training data and transforms the input data space into a new one useful for classification.
In the transformed space the classification is performed through a decision function (e.g.,
by using nearest neighbors rule). Specifically, LDA find the projection directions D on

Figure 10.16 : Linear Discriminant Analysis finds a linear transformation function so that
when the samples of different categories are projected on the new direction, between-class
variance is maximized, whereas within-class variance is minimized. In this example, the
best projection and the worst projection correspond respectively to the directions colored
in brown and blue. Samples projected on to the worst direction overlap (i.e., the yellow
region on the blue line). The two classes are separate considering the best projection
(brown line).

which the within-class scatter is minimized while the between-class scatter is maximized
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(Fig.(10.16)). This is done maximizing the ratio of the determinant of the between-class
scatter matrix B to the determinant of the within-class scatter matrix W of the training
data:

D = argmaxU
|UT BU|
|UT WU| = [d1,d2, . . . ,dN ]. (10.30)

The solution {di|i = 1,2, . . . ,N} is a set of eigenvectors of B and W (i.e., Bdi = λiWdi)
[25]. In the classification stage, the new data samples are simply projected onto the LDA
directions to form feature vectors to be classified by using a decision function. Usually,
Principal Component Analysis (PCA) is performed first to overcome the complication of
a singular within-class scatter matrix [48].

LDA has been successfully employed for different classification task (e.g., face recog-
nition). However, the method fails to solve non-linear problems [49], because LDA only
considers a single linear transformation in the global coordinate system. Due to the multi-
modally nature of the red-eye patches (i.e., colours, orientation, shape, etc.), a simple
LDA could fail during classification task. To overcome this problem the technique pro-
posed in this Section performs a clustering of the input space first, and then apply LDA
on each cluster. More specifically, during the learning phase, the patches are clustered
by using K-means [25] in their original color space producing the subsets of the input
patches with the relative prototypes; hence an LDA transformation is learned for each
cluster. PCA transformation is performed for each cluster and the dimension of the input
space is reduced before LDA computation. During the classification stage, a new patch
is assigned to a cluster according to the closest prototype, then the patch is transformed
by using the PCA and LDA basis corresponding to the associated cluster. The features
obtained projecting patches on the LDA space are used in combination with a simple de-
cision function to achieve the final classification. Specifically, for each cluster we have
considered the projection of patches on the LDA direction corresponding to the maximum
eigenvalue. The classification of a patch is hence obtained taking into account a threshold
properly learned for the cluster under consideration.

10.4.2 Experimental Settings and Results

The described red-eye detector system has been tested on a dataset of 450 images in which
1056 red-eyes have been manually labeled. The dataset has been collected from various
sources, including DSLR images, compact cameras, personal collections and Internet
photos. Single red-eyes, as well as high variability of red-eyes colors, poses and shapes
have been considered in building the dataset.

In the first stage of the aforementioned method, the filtering pipeline (see Chapter
8.2.5) has pointed out 4081 patches as possible red-eyes candidates. In particular, 957
patches were true positives whereas 3124 patches were false positives. These patches
have been further classified by using the method described in Section 10.4.1. In order to
evaluate the classification performance of the proposed cluster-based LDA, the leave-one-
out cross validation procedure (LOOCV) has been employed. Each run of LOOCV has
involved a single patch obtained from the red-eyes extraction phase (see Chapter 8.2.5)
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as test to be classified, and the remaining patches as the training data. This is repeated to
guarantee that each input patch is used once as patch to be classified.

At each run of LOOCV the training patches have been clustered and then LDA learn-
ing phase has been performed on each cluster after dimensional reduction in the PCA
space (1% of reconstruction error). For each cluster, the direction related to the maximum
eigenvalue of the corresponding LDA transformation has been considered as discrimina-
tive feature for classification purpose. The threshold used as discriminative function for
each cluster-based LDA has been fixed in order to obtain the best trade-off between false
positive (to be minimized) and hit rate (to be maximized) for the training set under con-
sideration.

In the classification stage, the test patch has been first assigned to the closest cluster
taking into account the learned prototypes, then projected in the reduced PCA space, and
finally projected on the corresponding LDA direction. The derived feature is used for
classification taking into account the threshold associated to the selected cluster. The
final red-eye vs. other classification results have been obtained averaging on the results
of the overall LOOCV runs.

The average accuracy obtained with the proposed method was 99.68%. These results
have been obtained by using three clusters (Fig.(10.17)). Table 10.6 reports the average
confusion matrix obtained considering all the leave-one-out runs (the x-axis represents
the inferred classes while the y-axis represents the ground-truth category). The proposed
method obtained high hit rate and very low false positive rate on the patches detected
through the image filtering pipeline.

In order to point out the usefulness of the cluster-based LDA, the classification tests
have been repeated by employing classic LDA. In Table 10.7 the average confusion matrix
obtained employing classic LDA and LOOCV procedure is reported. The results confirm
that a cluster-based LDA is useful to reduce the false positive rate since it can better deal
with multi-modally nature of the data.

In Fig.(10.18) two examples of misclassified patches are reported. In Fig.(10.18(a))
a “golden” eye is depicted (another possible artefact due to similar acquisition problem).
The underlying structure of the patch in Fig.(10.18(b) is probably the main reason of
misclassification.

Taking into account both the filtering and the classification stages, the overall accuracy
of the proposed red-eyed detector is 90.06%. This means that 951 red-eyes have been
correctly detected with respect to the 1056 red-eyes of the 450 input images, whereas only
7 false positives have been introduced. These results compares favorably with accuracy
performances of other state-of-the-art solutions [50, 51].

Table 10.6 : Confusion matrix obtained employing cluster based LDA.
Eyes Other

Eyes 99.37 0.63
Other 0.22 99.78
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(a) (b) (c)

Figure 10.17 : Example of clusters prototypes obtained in a LOOCV run.

Table 10.7 : Confusion matrix obtained employing classic LDA.
Eyes Other

Eyes 99.58 0.42
Other 8.52 91.48

(a) False Negative. (b) False Positive.

Figure 10.18 : Examples of misclassified patches.

10.5 Summary and Conclusion
The problem of categorization is currently of great interest for Computer Vision research
community. Basic concepts useful to build a categorization engine by learning from im-
age examples have been briefly introduced in Section 10.2. Basic Computer Vision and
Machine Learning techniques useful for scene recognition and red-eye detection in the
context of single sensor imaging devices have been presented respectively in Section 10.3
and 10.4. Since the new concept of camera 2.0 is becoming more and more realistic [52],
and considering the recent advancements in exploiting the content of images as interme-
diate steps for many other related tasks (e.g., object detection, color constancy, etc), lead
us to believe that the development of imaging pipeline involving complex task represents
an important challenge in the research area of Image Processing for Embedded Devices.
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[28] A. Bosch, A. Zisserman, and X. Muñoz, “Scene classification via pLSA,” in Euro-
pean Conference on Computer Vision (ECCV-06), pp. 517–530, 2006.

[29] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories,” in IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR-06), pp. 2169–2178,
2006.

[30] S. Battiato, G. M. Farinella, G. Gallo, and D. Ravı̀, “Scene categorization using
bag of textons on spatial hierarchy,” in IEEE International Conference on Image
Processing (ICIP-08), pp. 2536–2539, 2008.

[31] A. Bosch, A. Zisserman, and X. Muñoz, “Scene classification using a hybrid gener-
ative/discriminative approach,” IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 30, no. 4, pp. 712–727, 2008.

[32] S. Battiato, G. M. Farinella, G. Gallo, and D. Ravı̀, “Spatial hierarchy of textons
distributions for scene classification,” in 15th International Multimedia Modeling
Conference on Advances in Multimedia Modeling (MMM-09), vol. 5371 of Lecture
Notes in Computer Science, pp. 333–343, Springer-Verlag, 2008.

[33] G. Farinella and S. Battiato, Representation Models and Machine Learning Tech-
niques for Scene Classification, ch. Pattern Recognition and Machine Vision. P. S.
P. Wang, River Publishers, 2010.

[34] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization
with bags of keypoints,” in ECCV International Workshop on Statistical Learning
in Computer Vision, pp. 1–22, 2004.

[35] A. Torralba and A. Oliva, “Semantic organization of scenes using discriminant struc-
tural templates,” in IEEE International Conference on Computer Vision (ICCV-99),
pp. 1253–1258, 1999.

[36] J. Luo and M. R. Boutell, “Natural scene classification using overcomplete ICA,”
Pattern Recognition, vol. 38, no. 10, pp. 1507–1519, 2005.

[37] G. M. Farinella, S. Battiato, G. Gallo, and R. Cipolla, “Natural versus artificial scene
classification by ordering discrete Fourier power spectra,” in International Workshop
on Structural, Syntactic, and Statistical Pattern Recognition (SSPR & SPR - 08),

Image Categorization Image Processing for Embedded Devices   267 

   



vol. 5342 of Lecture Notes in Computer Science, pp. 137–146, Springer-Verlag,
2008.

[38] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
in Information Processing & Management, vol. 24, p. 513523, 1988.

[39] B. Shen and I. K. Sethi, “Direct feature extraction from compressed images,” in Stor-
age and Retrieval for Image and Video Databases (SPIE-96), pp. 404–414, 1996.

[40] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation
of the spatial envelope,” International Journal of Computer Vision, vol. 42, pp. 145–
175, 2001.
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Image and Video Coding and Formatting

A. Bruna, A. Buemi, G. Spampinato
Advanced System Technology - Catania Lab, STMicroelectronics, Italy.

Abstract: The data acquired by the sensor have to be processed by the coprocessor or the host
microprocessor, so both the systems have to share the same communication protocol and data
format. Moreover, at the end of the image generation pipeline the image must be coded in a
standard format in order to be read by every external device. Usually the sensor provides the image
in the Bayer format. In the past the Bayer data were stored and transmitted using proprietary
format and protocol; such solution has the drawback that every designer had to use the same
proprietary interface to manage the sensor data. In the latest years the majority of companies
making, buying or specifying imagine devices proposed a new standard called Standard Mobile
Imaging Architecture (SMIA). It allows interconnecting sensors and hosts of different vendors.
Concerning the output of the coprocessor, several standard formats are available. For still images
the most frequently used are the Joint Picture Expert Group (JPEG) with a lossy compression, the
Targa Interchange Format (TIF) with a lossless compression. In the top level imaging devices the
output of the sensors can also be stored directly by making use of a proprietary file format, such as
the Nikon Electronic Image Format (NEF), the Canon RAW File Format (CRW), etc. For videos
the most used are MJPEG, MPEG-4, H.263 and H264 standards. This chapter besides presenting
the main data formats gives also a short description to the next JPEG XR Image Coding Standard.
Moreover some techniques concerning the compression factor control and the error detection and
concealment are introduced.

11.1 Introduction and Motivation

Images and videos contents require a huge amount of memory to be stored. As example,
a 12 Mpixels RGB image requires 34 MBytes using 8 bits per color channel. Although it
could not be a problem with the actual memory size, it is convenient to compress images
for different reasons: data are redundant and there is no reason to store them uncom-
pressed; less size means less time to be transmitted, less bandwidth, less power consump-
tions, etc. Concerning the videos the problem is more evident: for an HDTV video 720p
format (1280x720 pixels), at 50 HZ (frames per seconds), the required memory should be
132 MBytes/s if uncompressed! The compression is performed at the end of the image
pipeline, just before the data transmission or storing. We mention here also algorithms
to compress the Bayer data, a desirable feature employed in many situations. Any de-
vice containing an image sensor improves its performances if the amount of data to be
processed is reduced. Thus, in an imaging device the transmissions of coded data from
the sensor to the co-processor allows saving memory and bandwidth, whilst in imaging
devices for video conferencing the input compression provides both better frame rates
and bigger image size, that means reduced space requirements and increased image qual-
ity [1]. One more application would be wireless phones that send and receive still or
video images [2]. Moreover the software pipeline requires a frame buffer whose size
could decrease since the compression makes possible transmission of reduced data. The
conventional scheme of an Image Generation Pipeline (IGP) consists of three basic steps:
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the acquisition of the image in Color Filter Array (CFA) format, the color interpolation
of the captured data yielding a full color image and the compression for image storing.
Such scheme implies that the redundancy is firstly introduced by the demosaicing process
and then reduced in the compression step. Moving the coding operation before the pixel
interpolation retains more pertinent information allowing lower compression ratio and
higher image quality [3]. But is important to point out that any error introduced in the co-
decoding process of the data captured in CFA pattern is propagated to the following stages
of the pipeline, with the risk of introducing artifacts to the final image. For this reason
the basic requirement of a Bayer pattern coding algorithm is to preserve the information
providing lossless or visually lossless compression, at the cost of a limited compression
ratio. Other constraints are efficiency, low computational and memory costs and a Fixed
Length Coding (FLC), especially for application that requires real time transmission.

11.2 Still Image Compression Formats
Image compression is basically the application of data compressions techniques on digital
images. The compression of still images, in particular, is based on reducing the spatial re-
dundancies. A lot of algorithms are in literature and they can be grouped in two branches:
lossless (without loss of information) and lossy (some information is discarded). In imag-
ing devices both methods are used, depending on the application. The most used still
image compression format is the JPEG. Concerning the lossless data formats, there is not
a standard: every company has its own file format (RAW data format). The JPEG 2000 is
also described; despite its performances, it is not yet used due to its high complexity.

11.2.1 JPEG
The JPEG compression standard [4] was released in 1986. Its name stands for ”Joint
Photographic Experts Group” [5] (i.e., the committee that defined it). The JPEG became
- and still is - the most used image compression methods since it allows a good trade-
off between compression factor and image quality. Best results are obtained for natural
images, while the behavior to synthetic images is not good. Moreover, increasing the
resolution, the compression ratio usually increases. Despite other formats (sometimes
better than the JPEG) have been developed in the last years, the JPEG is still the most
used. The standard is composed by 4 parts:

• Part 1 [4] describes the requirements and guidelines;

• Part 2 [6] describes the compliance testing (i.e., the tests and the results to be con-
form to the Part 1);

• Part 3 [7] is an extension and it contains additional guidelines to increase the stan-
dard performances;

• Part 4 [8] describes methods used in the extended JPEG.

Image and Video Coding and Formatting Image Processing for Embedded Devices   271 

   



DCT Quantizer

Huffman
table

Quantization
Table

Entropy
encoderZig-ZagYCbCr DCT data Qdct ZZ JPEG img

Q H

Figure 11.1 : JPEG encoder scheme.

It must be noted that the JPEG Part 1 describes a method of compressing digital image,
regardless the image formatting (e.g., YUV, RGB, etc.) but the common de facto image
format is YCrCb, as described in the SPIFF document (i.e., Part 4 of the standard).

Along the years, a lot of work was focused to optimize each step of the algorithm
[9–11] obtaining both hardware or software implementations, some of them available for
free. Other works are focused on error detection and concealment [12], on better visual
quality [13–16] and to control the compression factor [17–19]. We will discuss about all
these aspects in the next sections.

JPEG Encoder and Decoder Basic Schemes

Fig.(11.1) shows the basic schema of a typical JPEG encoder. The input image is usually
represented in the RGB data format. Red, green and blue data are highly correlated [20].
In order to increase the compression factor, it is better to decorrelate data to further discard
less important information. The better decorrelation space for this purpose is the YCbCr.
The converting formulas are:⎧⎨

⎩
Y = 0.299R+0.587G+0.114B
Cb = (B−Y )/2+0.5
Cr = (R−Y )/2+0.5

(11.1)

Moreover, since the human visual system is more sensitive to luminance than to
chrominance data, the chromatic channels are usually sub-sampled. The most used sub
samplings are the so-called 4:4:4 (i.e., no sub-sampling), the 4:2:2 (chromatic data are
sub-sampled only in the horizontal direction) and the 4:2:0 (chromatic data are sub-
sampled both in the horizontal and in the vertical directions). The image is then parti-
tioned into non-overlapping 8 x 8 blocks. The forward Discrete Cosine Transform (DCT)
is applied to each block. The main advantages of DCT are:

• The energy compaction performance is nearly optimal, closest to the KLT (Karhunen-
Loeve Transform) [20];

• The DCT coefficients are real numbers;
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• DCT is a reversible linear transform and provides a set of orthonormal discrete basis
functions;

• Many fast algorithms for forward and inverse DCT are known [21, 22].

The conversion formula is the following:

F(u,v) =
1
4

C(u)C(v)

[
7

∑
x=0

7

∑
y=0

f (x,y)cos
(2x+1)uπ

16
cos

(2y+1)vπ
16

]
(11.2)

While the inverse formula is:

f (x,y) =
1
4

[
7

∑
x=0

7

∑
y=0

C(u)C(v)F(u,v)cos
(2x+1)uπ

16
cos

(2y+1)vπ
16

]
(11.3)

where: {
C(u),C(v) = 1√

2
i f u,v = 0

C(u),C(v) = 1 otherwise
(11.4)

f (x,y) are the image data in the spatial domain, F(u,v) are the image data in the
transformed domain.

The 64 data are quantized according to a quantization table. The quantization fac-
tors are not defined in the standard and can differ between luminance and chrominances.
Lower are the quantization factors, higher is the image quality. The standard suggests
two quantization tables (Qy for the luminance and Qc for both Cr and Cb components),
as shown below:

Qy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.5)

Qc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11.6)

A rounding is also performed to obtain integer values. The first coefficient F(0,0) of
each block is called DC while the others are called AC coefficients. The DC, in particular,
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Figure 11.2 : Zig zag scan.

is proportional to the mean value of the block in the spatial domain. Usually it is similar
to the adjacent blocks, so the difference with the DC coefficient of the previous block
is used for encoding. Conversely, the AC coefficients are difficult to predict, so they are
encoded directly. A zig zag reordering according to the Fig.(11.2), is then employed to
obtain a single vector. In this way a long sequence of zero coefficients is placed in the
latest elements of the vector. The last step is the entropy encoder. It is composed by a
run-length and a variable length encoder. The DC value is encoded as difference with
the DC of the previous block and then using a variable length encoder. The AC data are
firstly grouped in pairs containing the number of zeros and the non zero value. If all the
remaining values are zero a special word, called End Of Block (EOB), is used. A further
variable length encoder generates a word for every pair. The standard does not impose
a particular variable codes table, but suggests one table for the DC and one for the AC
coefficients. It is up to the implementation to use the standard or its own tables. The
decoding process is composed by the same processes but in the reverse order, i.e. variable
length decoding, inverse zig zag reordering, DC computation (by summing the value of
the previous block), inverse quantization and inverse DCT .

11.2.2 RAW Data Format
The JPEG standard is basically a lossy algorithm used in the imaging devices for encoding
after the image reconstruction. In the last years the customers asked for the raw data (i.e.,
the data coming directly from the sensor without any processing or loss of information).
So the manufacturers, especially for high end still cameras, inserted the possibility to
save directly the raw data coming from the sensor. Even if some attempts were done to
standardize the raw file format (e.g., Adobe’s DNG, OpenEXR, etc.), each company has
its own (proprietary) file format: Nikon (NEF), Canon (CR2), Sony (SR2), etc. Usually
these file formats are based on the TIFF specifications and they contains not only the raw
data but also meta-data (e.g., exposure settings, flash, focal length, etc.) useful for the
post-processing reconstruction. The main advantages are that all the process to obtain the
RGB image can be performed off-line and the user can play with the data to obtain the
desired picture. There are mainly two drawbacks: the first is that each company must
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provide an appropriate reader to view and process the raw image. The second drawback
is that the file size is usually huge.

11.2.3 JPEG2000
The compression standard JPEG2000 [23, 24] was born at the beginning of the third mil-
lennium with the aspiration of overcoming existing standards in terms of image quality.
Moreover it has been created to provide features and functionalities that the current stan-
dards cannot address [25]. In particular, the JPEG2000 target was to match the require-
ments of a diversity of applications: Internet, printing, scanning, digital photography,
mobile applications, E-commerce and so on. Unification of lossless and lossy compres-
sion mode, progressive transmission by pixel accuracy and by resolution, robustness to
bit-errors, Region Of Interest (ROI) coding, are only few representative features provided
by JPEG2000. Despite the large interests of such characteristics, the increase of the band
capability in years following the standard publication and the high complexity of the
JPEG2000 architecture reduced its possibility of application. For example, transmission
at very low bit rate is no more a basic need. However, several features are object of inter-
est in specific applications (e.g., digital cinema high resolution video [26]). This Section
provides a brief overview of the JPEG2000 image compression standard.

JPEG2000 Main Features

One of the main goals of the new standard is achieving the best performances at low bit
rates: JPEG2000 has been designed to offer performances superior to the current stan-
dards at bit-rates below 0.25 bpp. This feature was originally desirable for application
that needs network image transmission. Also the blocking effect, one of the main defect
of JPEG at high compression ratio, is reduced thanks to the so-called ”tiling”, that is the
partitioning of the image in rectangular blocks of arbitrary size (up to the whole image
size). The possibility of overlap adjacent tiles is also provided in order to reduce the
blocking artifacts even if small tile size is defined.

Fig.(11.3) shows a comparison between JPEG and JPEG2000 coding at a bit-rate of
0.125 bpp. Note that information lost in the JPEG-coded image (Fig.(11.3(a))) are par-
tially preserved in the JPEG2000 image (Fig.(11.3(b))), even if the global quality is low
due to the high compression ratio. It’s important to point out that the gap of the perfor-
mances decreases as the bit-rate increase. One more basic feature of the JPEG2000 is
the possibility of performing lossless coding, a useful opportunity for several application
(e.g., medical images processing). Moreover, the Region of Interest (ROI) coding allows
to code specific image zones at higher bit-rate. Such possibility makes possible, for ex-
ample, preserving the central zone of the image when the ”portrait” option is enabled in
imaging devices. Strictly related with the ROI option is the random codestream access-
ing that allows to select and restore the ROI with higher fidelity respect to the rest of the
image. Progressive transmission by pixel accuracy and resolution is another interesting
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(a) JPEG image coded at 0.125 bpp (b) JPEG2000 image coded at 0.125 bpp

Figure 11.3 : Comparison between JPEG and JPEG2000 compression at very low bit-
rate.

Input image
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Figure 11.4 : JPEG2000 encoder scheme.

feature because allows restoring of images with different resolutions and pixel accuracy,
as needed or desired, for different target devices.

JPEG2000 Coder and Decoder Basic Schemes

Fig.(11.4) shows the core encoding scheme of JPEG2000. The input image is firstly
divided into tiles processed independently. For each tile the Discrete Wavelet Transform
(DWT) is then performed and each subband is quantized and divided into frames and
each frame is split in codeblocks. The compression is then performed by applying on
each codeblock the entropy coding that consists in two steps Tier1 and Tier2 and it is
performed by the EBCOT (Embedded Block Coding with Optimal Truncation) algorithm
[27]. The EBCOT allows to obtain the bitstream resolution and SNR scalability, random
access capability, because each codeblock is done independently. The decoding scheme
is illustrated in Fig.(11.5) and it is basically the reverse process of the encoder.

11.3 Video Compression Formats
The video compression formats are based on reducing the spatial redundancies (as for
the still images) and also the temporal redundancies. Temporal adjacent frames, in fact,
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Figure 11.5 : JPEG2000 decoder scheme.

are usual almost similar, hence only the differences between them can be stored. As for
the still images, a lot of standards have been published; in this Chapter will be shortly
described the Motion JPEG (MJPEG), the H.263, the MPEG-4 and the H.264.

11.3.1 MJPEG

Motion JPEG is a video format where each frame of the sequence is compressed using the
JPEG compression standard. The stream is usually encapsulated in Microsoft’s AVI for-
mat or Apple’s QuickTime MOV container. It is not an international standard (i.e., there
is no official document containing its specification). This raises compatibility concerns
among different implementations.

It was usually used for the video editing, but now it is also used by many portable
devices. It is similar to the MPEG compression format using only I frames, avoiding P
and B frames. Moreover the editing of the sequence does not affect the video quality
(because there is no need to decode and re-encode the frames) and the encoder is very
simple (because there is no need of motion estimation techniques, etc.), but the achieved
compression ratio is low.

11.3.2 H.263

H.263 video standard [28] has been designed for low bit-rate communications, to replace
H.261 [29] for video conferencing in most applications, even if the coding algorithms of
the two standards are similar.

The H.263 standard, like H.261, is arranged in a hierarchical structure with four layers.
From top to bottom the layers are:

1. Picture, which consists of a picture header followed by data for Group of Blocks,
eventually followed by an end-of-sequence code and stuffing bits.

2. Group of Blocks (GOB), which consists of a GOB header followed by data for
macroblocks. Each GOB contains one or more rows of macroblocks. For the first
GOB in each picture (with number 0), no GOB header shall be transmitted.

3. Macroblock, which consists of a macroblock header followed by data for blocks.
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4. Block, which comprises four luminance blocks and one of each of the two color
difference blocks (if not in PB-frames mode).

For further details please see the standard documentation [28].

Main Innovation of H.263

The differences between the H.261 and H.263 coding algorithms are:

1. Half pixel precision, used for motion compensation, whereas H.261 used full pixel
precision.

2. Optional parts of the hierarchical structure, so the codec can be configured for
a lower data-rate or better error recovery.

3. New resolution support. In addition to QCIF and CIF that were supported by
H.261 there is SQCIF, 4CIF, and 16CIF.

Moreover, now four optional negotiable options have been included in H.263 to im-
prove performance. They are:

1. Unrestricted Motion Vector mode (Annex D). Motion vectors are allowed to
point outside the picture. The edge pixels are used as prediction for the ”not ex-
isting” pixels. With this mode a significant gain is achieved if there is movement
across the edges of the picture, especially for the smaller picture formats.

2. Syntax-based Arithmetic Coding mode (Annex E). Arithmetic coding is used
instead of variable length coding. The SNR and reconstructed pictures will be the
same, but significantly fewer bits will be produced.

3. Advanced Prediction mode (Annex F). Overlapped block motion compensation
(OBMC) is used for the luminance part of P-pictures. Four 8x8 vectors instead of
one 16x16 vector are used for some of the macroblocks in the picture. Four vectors
use more bits, but give better prediction. Especially a subjective gain is achieved
because OBMC results in less blocking artifacts.

4. Forward and Backward frame prediction or PB-frames mode (Annex G). A
PB-frame consists of two pictures being coded as one unit. A PB-frame consists
of one P-picture predicted from the previous decoded P-picture and one B-picture
which is predicted from both the previous decoded P-picture and the P-picture cur-
rently being decoded. The name B-picture was chosen because parts of B-pictures
may be bidirectional predicted from the past and future pictures. With this coding
option, the picture rate can be increased considerably without increasing the bit-rate
much.
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Figure 11.6 : Hierarchical structure of MPEG-4 standard.

11.3.3 MPEG-4
In MPEG-4 video standard [30], like H.263 [28], synthetic objects and their attribution
are structured in a hierarchical manner, as indicated in Fig.(11.6). Visual Object Sequence
(VOS) is the highest syntactic structure of the coded visual bitstream. A visual object se-
quence commences with a VisualObjectSequenceStartCode which is followed
by one or more visual objects coded concurrently. The visual object sequence is termi-
nated by a VisualObjectSequenceEndCode. A Visual Object (VO), the following
structure in hierarchical order, commences with a VisualObjectStartCode, is fol-
lowed by profile and level identification, a VisualObjectID, and finish with a video
object, a mesh object, a face object or a still texture object. For video application, the
video object is the most important, so we will focus on it. Its structure is reported in
Fig.(11.7).

A video object starts with a VideoObjectStartCode and it is followed by one
or more video object layers, which consists of one or more group of Video Object Plane
(VOP). A VOP contains a single frame of an object. There are four types of VOPs that
use different coding methods:

1. Intra-coded (I), which is coded using information only from itself, so it can be
reconstructed independently from other VOPs.

2. Predictive-coded (P), which is a VOP coded using motion compensated prediction
from a past reference VOP.

3. Bidirectional predictive-coded (B), which is a VOP which is coded using motion
compensated prediction from a past and/or future reference VOP(s).

4. Sprite (S), which is a VOP for a sprite object, used for codification of not moving
objects in the scene.

Data contained in a VOP are divided into macroblocks. A macroblock contains a
section of the luminance component and the spatially corresponding chrominance com-
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Figure 11.8 : 4:2:0 macroblock structure.

ponents. A skipped macroblock is one for which no information is transmitted. Presently
there is only one chrominance format for a macroblock, namely, 4:2:0 format. A 4:2:0
macroblock consists of 6 blocks, having dimensions of 8x8 each. This structure holds 4
Y, 1 Cb and 1 Cr blocks and the block order is depicted in Fig.(11.8).

To provide forward compatibility with video codecs designed using the earlier video
coding specification standard H.263 [28], the ShortHeader format is included in MPEG-4
video standard. More precisely, a ShortHeader bitstream is an H.263 baseline bitstream
without any further annexes.
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Main Innovation of MPEG4

In comparison with H263, MPEG4 adds a layer of error resilience. This is achieved
through the following MPEG-4 codec capabilities:

1. Resyncrhonization. A resynchronization marker can reduce the error propagation
caused by the nature of variable length code (VLC) into single frame. In MPEG-
4, the resynchronization marker is inserted at the top of a new group of blocks
GOB with the header information (multiplexed block number [MBN], quantization
parameters and optional HEC), so that decoding can be done independently.

2. Data partitioning. A new synchronization code named motion marker separates
the Motion Vector (MV) and Discrete Cosine Transform (DCT) field to prevent
from inter-field error propagation, thus allowing effective error concealment to be
performed. When errors are detected solely in the DCT field, that multiplexed block
(MB) will be reconstructed using correct MV. This results in natural motion better
than simple MB replacement of the previous frame.

3. Reversible Variable Length Code (RVLC). The RVLC enables forward and back-
ward decoding without significant impact on coding efficiency. This feature local-
izes error propagation ideally into single MB.

4. Adaptive Intra Refresh (AIR). Different from the conventional cyclic intra re-
fresh, AIR employs motion-weighted intra refresh, which results in better percep-
tual quality with quick recovery in corrupted objects.

5. Error detection and concealment. Errors can be detected through exception or
violation in the decoding process, and then concealment will be applied. The func-
tionality is included for mobile application.

11.3.4 H.264
H.264 standard, otherwise known as MPEG-4 Part 10 or AVC (Advanced Video Coding)
[31], takes the MPEG-4 format to another level. It focuses on lossless methods and aims
for flexibility on a variety of network types and application domains. H.264/AVC video
standard has achieved a significant improvement in rate-distortion efficiency, providing
approximately a 50% bit rate savings for equivalent perceptual quality relative to the
performance of prior standards [32].

Main Innovation of H.264

H.264/AVC/MPEG-4 Part 10 contains a number of new features that allows it to improve
coding efficiency. In particular, some of such key features include:

1. Context-adaptive entropy coding. Two entropy coding methods applied in H.264
to improve performance relative to prior standard designs:
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(a) Context-adaptive binary arithmetic coding (CABAC) is an algorithm to
lossless compress syntax elements in the video stream knowing the probabil-
ities of syntax elements in a given context. CABAC compresses data more
efficiently than CAVLC but requires considerably more processing to decode.

(b) Context-adaptive variable-length coding (CAVLC) is a lower complexity
alternative to CABAC for the coding of quantized transform coefficient values.
Although lower complexity than CABAC, CAVLC is more elaborate and more
efficient than the methods typically used to code coefficients in other prior
designs.

2. Short word-length transform. All prior standard designs have effectively required
encoders and decoders to use more complex processing for transform computation.
While previous designs have generally required 32-bit processing, the H.264/AVC
design requires only 16-bit arithmetic.

3. Exact-match inverse transform. In previous video coding standards, the trans-
form used for representing the video was generally specified only within an error
tolerance bound, due to the impracticality of obtaining an exact match to the ideal
specified inverse transform. As a result, each decoder design would produce slightly
different decoded video, causing a ”drift” between encoder and decoder represen-
tation of the video and reducing effective video quality. H.264/AVC is the first
standard to achieve exact equality of decoded video content from all decoders.

In addition, some features have been designed to enhance coding efficiency:

1. Multiple reference picture motion compensation. Predictively coded pictures
(called ”P” pictures) in previous standards used only one previous picture to predict
the values in an incoming picture. The new design extension allows an encoder to
select, for motion compensation purposes, among a larger number of pictures that
have been decoded and stored in the decoder (up to 16 reference frames).

2. Variable block-size motion compensation with small block sizes. This stan-
dard supports more flexibility in the selection of motion compensation block sizes
and shapes than any previous standard. Supported luma prediction block size
are: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4. Chroma prediction block sizes are
correspondingly smaller according to the chroma sub-sampling in use. The new
H.264/AVC design is based primarily on a 4x4 transform. This allows the en-
coder to represent signals in a more locally-adaptive fashion, which reduces arti-
facts known as ringing.

3. Quarter-sample-accurate motion compensation. Most prior standards enable
half-sample motion vector accuracy at most. The new design improves up on this
by adding quarter-sample motion vector accuracy.

4. Weighted prediction. A new innovation in H.264/AVC allows the motion com-
pensated prediction signal to be weighted and offset by amounts specified by the
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encoder. This can dramatically improve coding efficiency for special cases, like
fading in and out of a video.

5. In-the-loop deblocking filtering. Block-based video coding produces artifacts
known as blocking artifacts. These can originate from both the prediction and resid-
ual difference coding stages of the decoding process. Application of an adaptive
deblocking filter is a well-known method of improving the resulting video qual-
ity. The deblocking filter in the H.264/AVC design is brought within the motion-
compensated prediction loop, so that this improvement in quality can be used in
inter-picture prediction to improve the ability to predict other pictures as well.

11.4 Compression Factor Control
In this Section some techniques to control the compression factor control for still images
and video formats will be described. These algorithms allow obtaining, with certain lim-
its, the required bit rate. It is useful when a fixed file size is required or a maximum
bandwidth is available for transmission. In particular, examples applied on Bayer data,
on JPEG, on JPEG2000 and on MPEG-4 data streams will be presented.

11.4.1 Bayer Domain

Big efforts have been spent recently on developing algorithm devoted to solve the problem
of compressing Bayer data at an appreciable bit rate with no visually loss in the output
image. The most trivial, inexpensive solution (both in terms of computational complexity
and hardware resources) is to split the Bayer image color channels and compress them in-
dependently using an efficient compression algorithm (i.e., Differential Pulse Code Mod-
ulation (DPCM) [20] or JPEG [33, 34] or JPEG-LS [35]). Although traditional coding
techniques offer good performances on full color images, most of them do not offer the
same performances with images captured by CFA digital sensors [36]. More sophisti-
cated compression methods for images in Bayer pattern format are based on Wavelet
transform [1, 37, 38] and properly modified JPEG [39]. Vector Quantization (VQ) [40] is
a useful tool for achieve a good trade-off between image quality and compression rate on
Bayer data. A VQ-based approach is the Predictive Vector Quantization (PVQ) [41] and it
consists of two independent stages. Firstly, the input image in CFA format is compressed
using a non-uniform vector quantizer, then a code describing each pair of adjacent pixels
of the same color channel is built. The code generation step exploits the chromatic spatial
correlation and several Human Visual System (HVS) heuristics to improve the compres-
sion efficiency. The resulting codestream is then further compressed applying a lossless
DPCM algorithm. A similar approach is the Predictive Vector Coding (PVC) [42], that
is based on the idea of applying the vector quantization on the prediction errors rather on
the pixel pairs.

The following subsections describe some algorithms for Bayer data compression in
more details.
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Predictive Vector Quantization

Given a vector [X1, . . . ,XN ] of size N, basic concept of Vector Quantization (VQ) [40]
can be described geometrically. The associated binary representation can be seen as a set
of N coordinates locating a unique point in the N-dimensional space. The quantization
is performed partitioning the space with N-dimensional cells (e.g., hyperspheres or hy-
percubes) with no gaps and no overlaps. As the point defined by the input vector falls
in one of these cells, the quantization process returns a single vector associated with the
selected cell. Finally, such vector is mapped to a unique binary representation, which is
the actual output of the vector quantizer. This binary representation (code) can have fixed
or variable length. A vector quantizer is said to be ”uniform” if the same quantization
step is applied to each vector element, so that the N-dimensional space is divided into
regular cells. If the space is partitioned into regions of different size, corresponding to
different quantization steps, the quantizer is called ”not-uniform”. The ”target” vector is
called ”codevector” and the set of all codevectors is the ”codebook”.

A uniform vector quantizer processes the input vector [X1, . . . ,XN ] applying the same
quantization step Q to each sample Xi (with 1 < i < N) according to the following formula:

V Q(Xi) = �Xi

Q
� ·Q, i = 1,2, ...,N. (11.7)

Resulting quantizer vector [Y1, . . . ,YN ] contains the reconstruction points for all samples
of the N-dimensional space that fall in the range

Yi < Xi < Yi +Q, i = 1,2, . . . ,N. (11.8)

Given a 2-D image, it is described by a 2-dimensional vector of luminance values falling
into the range [0, . . . ,2bitDepth −1]. Each pair of adjacent pixel is then mapped into a 2-D
histogram partitioned in regular cells, which corresponds to the fixed quantization steps.
The main drawback of uniform vector quantization approach is that all the regions of
the image are quantized at the same factor independently from their information content.
Since points along the diagonal of the histogram correspond to pixels of similar luminance
values (homogeneous regions), while points that fall far from the diagonal were generated
by pair of pixels of different luminance values (edge regions), a more sophisticated vector
quantizer could be defined.

Exploiting simple properties of the HVS, non-uniform quantizer can be used to reduce
the perceptual irrelevancy by quantizing more roughly where the quantization error is
less visible. This is the basic idea of the Predictive Vector Quantization (PVQ) [41].
The visibility of the error depends on two masking effects. Since quantization errors
are less visible along edges, PVQ performs a finer quantization near the diagonal of the
histogram using smaller cells. Furthermore, high intensity luminance could be quantized
more roughly, so PVQ performs finer quantization near the bottom left corner of the
histogram, as showed in Fig.(11.9). A Bayer pattern image of size NxN contains N2/2
green pixels, N2/4 red pixels and N2/4 blue pixels, so a scheme to build pairs of pixels
of the same component should be chosen (Fig.(11.10)).
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Figure 11.9 : Non-uniform partitioning of the 2-D histogram defining an adaptive quan-
tizer.

G1 R1 G3 R2
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Figure 11.10 : Pixel pairs construction scheme.

(a) Uniform VQ (b) not uniform VQ

Figure 11.11 : Comparison between uniform and not uniform Vector Quantizers.

Moreover, a code is assigned to each reconstruction point corresponding to a pair
< Ci,Cj > of pixels in a color component, applying an appropriate function f :

Ci j = f (< Ci,Cj >) (11.9)

Assuming that the Bayer image to be coded has a bit depth of eight bit, the not uni-
form vector quantizer must be defined by 512 reconstruction points, so a 9-bits code is
assigned to each pair of pixels in the original image and a bitrate of 4,5 bit per pixel (bpp)
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(a) RGB from uncom-
pressed CFA

(b) RGB from co-
decoded CFA

Figure 11.12 : Comparison between full color images obtained from the same Bayer with
and without compression.
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Figure 11.13 : PVC compression basic scheme.

is achieved. Fig.(11.11) shows a comparison between the compressed images obtained
using uniform VQ (Fig.(11.11(a))) and not-uniform vector-quantizer (Fig.(11.11(b))). In
the first case the quantization errors are evident in the homogeneous regions of the im-
age. Fig.(11.12) shows an example of PVQ compression performances. The image on
the left has been obtained performing the color interpolation starting from the original
Bayer pattern, the image on the right has been obtained processing the same CFA data
after the PVQ compression/decompression procedure. Note that the full color images are
comparable in terms of visual quality.

Predictive Vector Coding

One more compression algorithm based on VQ and suitable for Bayer pattern images is
the Predictive Vector Coding (PVC) [42], whose basic scheme is showed in Fig.(11.13).
It consists of four basic steps:

1. Prediction: application of the DPCM algorithm to compute the difference between
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Figure 11.14 : Typical DPCM error distribution.

the actual and the predicted pixel values gathered in vectors of two consecutive
elements of the same color channel.

2. Vector Mapping: reduction of the symmetry 2-D maps of the prediction errors
distribution.

3. Vector Quantization: VQ lossy compression of the data.

4. Code Generation: generation of an n bit code for each couple of pixels. In the fol-
lowing discussion the input is assumed to be a 10 bpp Bayer data and the generated
code is 12 bits length for a final bit rate of 6 bpp.

The DPCM step is based on the idea of reducing the entropy of the source by coding
the difference between the current value and a prediction of the value itself. The PVC
assumes that adjacent samples of the same color components have similar brightness val-
ues. The prediction function is performed with 2-dimensional vectors obtained applying
VQ. In particular, let (Vi,Vj) be the vector to be coded. The second value of the previ-
ous vector (Vi−1,Vj−1) is used to build a vector of two identical components (Vj−1,Vj−1)
which is the predictor for (Vi,Vj). This strategy has been chosen because Vj−1 is spatially
closer to (Vi,Vj) than Vi−1 and usually closer samples are statistically more correlated.
The error vectors (ei,e j) are computed as the difference between the vector to be coded
and the prediction vector:

(ei,e j) = (Vi,Vj)− (Vj−1,Vj−1) = (Vi −Vj−1,Vj −Vj−1). (11.10)

A typical error distribution for this kind of prediction scheme is showed in Fig.(11.14).
Note that such distribution has been obtained collecting statistics on a large dataset of

Bayer images. The VQ should be designed to optimize such distribution preserving the
samples that fall near the origin.

Moreover, observe that in the prediction error distribution is evident an odd symmetry
that can be exploited to reduce the size of the table used for the VQ because the vectors
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Figure 11.15 : Outer Quantization regions in PVC.

falling in the third and in the fourth quadrant can be mapped in the first and in the second
one, so just the two upper quadrants have to be quantized. This task is performed by the
”Vector Mapping” stage of the algorithm: it checks whether the input vector falls in the
upper part of the diagram or not. In the first case no changes occur, while, in the other
case, the sign of the values is changed. One bit is used in the final code in order to take
into account such mapping.

A grayscale 10 bit image is described by 2-dimensional vectors of brightness values
falling into the range [0, . . . ,1023]. In the PVC model, each codevector represents a 2-
dimensional input vector. The algorithm uses a not uniform VQ exploiting two HSV prop-
erties: the quantization errors are less visible along the edges and the eyes discriminates
better the details at low luminance levels. Thus, in the areas near the origin (where the pre-
diction error is low) a fine quantization is performed and most information is preserved.
On the contrary, in the area far from the origin, a coarse quantization is applied due to the
presence of boundaries and more information is loss. Furthermore, since DPCM drifts the
values towards zero, a very high percentile of input samples will fall in the area around
zero.

The PVC vector quantizer divides the two upper quadrants of the 2-dimensional quan-
tization space into 32 ”macro-regions” shaped and distributed to minimize the quantiza-
tion error. Each region has different size and position in the quantization board and it
has been divided into 64 ”sub-regions”. Such regions have been obtained dividing the
horizontal and vertical dimension by a constant number. In this way, bigger regions cover
bigger areas and the quantization is stronger (more loss of information), while in smaller
areas a lighter quantization is applied and most information is preserved (Fig.(11.15)).

Each vector (e1,e2) to be quantized is approximated with the nearest couple in the
corresponding sub-region.

The final step is the code generation that defines the final Bayer compression format.
The code representing the vector quantized samples is a fixed length code. It summarizes
information about the vector mapping, the region where the point falls and the quantiza-
tion steps applied in each region. The first bit is the ”Vector Mapping” bit, indicating if
the swap between upper and bottom quadrants has happened or not. Next bits following
indicate the index of the region in the quantization table. The length of this part of the
code depends on the number of regions in the quantization table. The remaining bits give
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Figure 11.16 : Decoding scheme.

information on the number of steps, in both vertical and horizontal direction inside the
region. In this discussion we assumed that a 12-bits code should be generated, in order
to represent samples falling in a space partitioned into 32 regions and 64 ”sub-regions”.
Thus, the code reserves five bits to index 32 regions and 6 bits to index one of the 64 sub-
regions. Different code structure could be defined if the space partitioning or the target
bit-rate changes.

The PVC decoding procedure consists of three main steps. The first one is the code
evaluation allowing the extraction of the compressed values. The second one is the ”In-
verse Vector Mapping”. It assigns the right sign to values depending on the inversion flag.
Then the retrieving of the original values is obtained adding the decoded prediction error
to the previously restored vector. Since the predictor is equal both in the encoder and the
decoder, the predicted values are equal in the two parts of the processes, so there is no
propagation of error during the decoding process. The decoder block diagram is shown
in Fig.(11.16).

11.4.2 JPEG

The JPEG uses variable size codes. It means that, given a set of coding parameters, the
file size depends on the image content. It could be a problem since it does not allow
to know a priori the number of photo that can fit in a fixed size memory storage or the
required bandwidth to transmit it. So a lot of researches focused on the compression factor
control. Taking a look to the Fig.(11.1), the Huffman tables and the Quantization tables
can be used to modify the compression ratio. Optimizing the Huffman tables [19], the
file size decreases. Unfortunately the optimization is expensive because the image must
be scanned twice collecting all the pairs (run,value). Moreover the compression ratio is
fixed and the improvement is not so high since it is basically a lossless compression. The
most used technique to control the compression factor is hence modifying the quantization
tables. Increasing each quantization value correspond to increase the number of zeros,
hence reducing the number of pairs (run,value). Each quantization value can be modified
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independently, but usually the strategy is to modify a fixed quantization table using a
single multiplier:

Q̂ = Gain ·Q (11.11)

where Q̂ is the modified quantization table, Gain is a scalar value and Q is the original
quantization table. The compression factor control algorithm aims to find the gain factor
Gain to obtain a file size as close as possible to a target value. The modified block based
schema is shown in the Fig.(11.17).

In Fig.(11.18) is depicted the bit-rate obtained varying in increasing way the gain for
three different images. It shows that the bit rate depends on the image content (since
different content generates a different number of pairs (run,value)); the bit rate has dis-
continuities (especially when the gain causes a lot of quantization coefficients to vary);
the curve is monotonically non-increasing (by increasing the gain, the number of pairs
cannot increase).

The compression factor control algorithms can be evaluated through four different
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aspects:

• precision;

• image quality;

• speed;

• resources (computational cost, power consumption, etc.).

The ideal algorithm cycles indefinitely the gain factor choosing the value providing the
lowest error from the target. Of course it is very expensive algorithm (in terms of re-
sources), the computational time is unpredictable and it is very slow. Less expensive
algorithms can be divided in two types:

1. Constant precision;

2. Constant cycles number.

In the Constant precision algorithms the cycle is repeated until the bit/rate fits the prefixed
precision range. These algorithms have high precision, but the computational time and
the power consumption are not predictable. In the constant cycles number algorithms the
cycle is computed n-times (n>0). The precision is not predictable but the computational
time and the power consumption are predictable and they are used for real time imple-
mentation. The goodness of an algorithm is to obtain the best precision in few cycles.
The pseudo-code of a constant precision algorithm is the following:

Init (threshold, G, target);
repeat

bitrate = JPEGcompress(img, G);
G = modifyG(bitrate, target, G);

until (abs(bitrate-target) ≤ threshold) ;

Where:
img is the image;
G is the current gain value;
target is the target bit rate;
threshold is the required precision;
Init() set the initial values;
JPEGcompress() is a function that compress the image and return the bit count;
modi f yG() is the core of the rate control and modify the Gain value according to the

current results.
The pseudo-code of a constant cycles number algorithm is the following:

Some algorithms are available in [17, 18, 43].
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Init (ncycles, G, target);
for i=1 to ncycles do

bitrate = JPEGcompress(img, G);
G = modifyG(bitrate, target, G);

end

11.4.3 JPEG2000
One of the most impressive features of the standard JPEG2000 [23] is the possibility
of provide a bit-stream that is both resolution scalable (if DWT is adopted) and qual-
ity scalable (if multiple layers are provided). Such feature has been developed to make
the standard suitable for any application where bandwidth constraints require maximum
limited data transmission and/or a limited display resolution is available [44]. The scal-
able bit-stream is built thanks to the JPEG2000 core-coding engine based on the 2-tiers
paradigm of the EBCOT algorithm [27, 45].

The first tier provides a low level coding of the block samples belonging to the var-
ious image sub-bands by means of a context adaptive BAC (Binary Arithmetic Coding)
referred as MQ coder [34]. Then all the blocks are processed again to produce a full
packed bit-stream. They are subparts of code-blocks bit-stream that are spread across
different quality layers with each quality layer increasingly improving the final image.
The optimal block truncation is decided within Rate-Distortion (RD) optimization algo-
rithms [46] to produce layers of fixed bit rate or distortion. RD problems can be easily
solved relying on the well-known Lagrangian multiplier [47] method. For example, if a
target rate Rmax is desired for a given layer the following problem must be solved:

minimize
N−1

∑
i=1

Dni
i such that R =

N−1

∑
i=1

Rni
i ≤ Rmax (11.12)

where N is the number of blocks, ni is the chosen truncation point for the i-th block,
Dni

i and Rni
i are, respectively, distortion and rate for a block at a given truncation point. The

candidates truncations points are 3*K-1 (where K is the bit depth) and are produced by
the MQ-coder in three different coding steps. Solving the (11.12) corresponds to solving
the following:

minimize D(λ )+λ ·R(λ ) =
N−1

∑
i=1

Dni
i +λ ·Rni

i (11.13)

for a λ >0 found through bisection to achieve the target rate. This rate-control mecha-
nism, described in the standard in full details [23], is known in literature as PCRD (Post
Compression Rate Distortion Optimization) and its role is to find the optimal λopt which
can make ∑N−1

i=1 Dni
i minimize subject (ideally) to the constraint ∑N−1

i=1 Rni
i = Rmax. Such

approach, as most of the algorithms used for compression factor control, has the main
purpose of assuring a fixed file size. This constraint affects heavily the choice of the
trade-off between compression ratio and image quality and poses some practical restric-
tions both in terms of memory allocation and overall computation. Several techniques
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able to improve the visual quality of the image for a fixed bit rate have been proposed to
allow better performances of the compression standard JPEG [48–52]. In the same way,
some basic property of the Human Visual System could be exploited to code fewer bits to
represent perceptual less important areas of the image coded using the JPEG2000 [44].

11.4.4 MPEG4
In the MPEG-4 standard the compression factor control is obtained modifying a quan-
tization parameter. It can be different for each macro-block, hence the precision can be
very high. Video sequences are subjected to constraints in terms of bandwidth (i.e., bit/s)
when they are transmitted for real time applications (e.g., video conferences, etc.) or to fit
globally in the storage memory (e.g., video recorder, video messaging, etc.). In the first
case the constraint must be satisfied at frame level regardless the picture quality. In the
second case the constraint is at sequence level, hence the bits usage can differ for each
frame depending on the image complexity. Algorithms developed for the first case are
called Constant Bit Rate (CBR), while algorithms belonging to the second case are called
Variable Bit Rate (VBR). The main features of the CBR algorithms are:

• the Quantization Parameter (QP) is modified at macroblock level;

• a very hard rate control is performed;

• a variable quality picture is obtained.

The main features of the VBR algorithms are:

• the QP is modified at frame level;

• a constant quality picture is obtained;

• the quality between adjacent frames is similar;

• the rate is not ensured at frame level.

In the following we report the Scalable Rate Control (SRC) algorithm as proposed by
the standard (described in the Annex L of the standard [30]). The main features can be
resumed as follows:

• it can be used for both VBR and CBR;

• it is scalable for various bit rates (e.g., 10kbps to 1Mbps);

• it is scalable for various spatial resolutions (e.g., QCIF to CIF);

• it is scalable for various temporal resolutions (e.g., 7.5 fps to 30 fps);

• it is scalable for various coders (e.g., DCT and wavelet);

• it can handle I, P, and B pictures.
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The SRC scheme assumes that the encoder rate distortion function can be modeled as:

R =
X1 ·S

Q
+

X2 ·S
Q2 (11.14)

where R is the target of bits for the frame; S is a complexity measure of the frame; Q is
the quantization parameter of the frame; X1 and X2 are the modeling parameters. The
algorithm works in two steps:

1. Before the frame encoding:

• the target bit rate (R) is assigned to the frame based on the bits needed for the
previous frame and on the content of the current frame;

• the Q value is retrieved using the rate distortion model curve.

2. After the frame encoding:

• the modeling parameters (X1, X2) are updated;

• skip the next frames if needed.

Another concept to be kept in consideration is the so called Video Buffer Verifier
(VBV). For real time applications, where the device has a fixed size buffer, it is important
to avoid buffer overflow, otherwise data will be lost. The VBV is a theoretical video buffer
model introduced in the standard to avoid overflow and underflow. A standard compliant
video stream will never overflow nor underflow. The encoder must control that the VBV
requirements are fitted. The analysis of the VBV is out of the scope of this book. More
information can be read in the Annex D of the standard [30].

An example in pseudo-code of the SRC used as VBR is the following:

Init (ncycles, G, target);
for i=1 to ncycles do

S(t) = Complexity (CurrentFrame);
R(t) = ComputeR (R(t-1), S(t));
Q(t) = ComputeQ (R(t), S(t), X1, X2);
T(t) = EncodeFrame (Q(t));
UpdateX (&X1, &X2, T(t));
SkipFrame (T(t), VBVinfos);

end

where T (t) is the number of bits spent to encode the frame and V BVin f os controls
the fullness of the Video Buffer.

11.5 Error Detection and Concealment
The error detection and error concealment techniques are becoming more and more im-
portant thanks to the growing interest in still picture and video delivery over wireless
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Figure 11.19 : Propagation errors effect over time.

channels, in particular for mobile applications. The main problem for such type of ap-
plications and in general for any standard video compression, is that the transmitted bit-
stream is very sensitive to the channel noise due to the presence of the Variable Length
Codes (briefly VLCs). In fact, when the decoder detects an error in a VLC, it doesn’t
know where the next VLC starts and then it can only look, if possible, at the next resyn-
chronization point or, in the worst case, at the end of the frame, losing a lot of information.
Moreover, in video decoding, due to the presence of the motion compensation algorithms,
a single bit error during the transmission produces a noticeable degradation affecting not
only the current frame, but also the subsequent frames. These particular kinds of problems
are known as ”propagation errors” as showed in Fig.(11.19).

Error Detection

The error detection techniques consist in a set of testing procedure needed to avoid the
decoding of corrupted data. These checks are a basic feature of the decoder because they
make it able to prevent decoding failure improving at the same time the overall video
quality. Generally, in the video or still picture standard the following tests are executed
and verified:

1. An illegal VLC is received.

2. A semantic error is detected:

(a) More than 64 DCT coefficients are decoded in a block (if IDCT is present).

(b) Inconsistent resynchronization header information (if resynchronization mark-
ers are present).

Error Concealment

The error concealment techniques are applied when an error is detected in order to replace
the corrupted information with some other information that can be represented in a more
graceful way (”graceful degradation”). The decoder must decide which part of the frame
is assumed to be error free and which part will be concealed. The error concealment
methods described here can be divided into three main groups [53]:

Image and Video Coding and Formatting Image Processing for Embedded Devices   295 

   



R M k t l M bl k D tbl k b HECResync Marker quant_scale Macroblock Datamacroblock_number HEC

Figure 11.20 : Video Packet composition in MPEG-4.

1. Spatial concealment. It consists in estimating missing pixels by smoothly extrapo-
lating surrounding pixels (for example using bilinear interpolation from the neigh-
borhood pixels). In general, spatial concealment methods are the most complex,
since a computation must be done for each pixel and correctly recovering missing
pixels is extremely difficult.

2. Frequency concealment. In this case, some low-order DCT coefficients of the
missing blocks are estimated using either the corresponding DCT coefficient of
neighboring blocks, or the neighbor’s DC values.

3. Temporal concealment. Usually two methods are used:

(a) Temporal interpolation. It consists in copying the pixels at the same spatial
location in the previous frame (freeze frame). It is effective when there is no
motion, but there are potential problems in the presence of intensive motion.

(b) Motion compensated temporal interpolation. It usually uses motion vector
to estimate missing block as motion-compensated block from prior frame. It
can also use an averaging of the surrounding motion vectors (if present) or it
can be computed with some other heuristics.

11.5.1 MPEG4

Some error detection and concealment improvements for the video standard MPEG-4
have been proposed in [54]. In particular, we put into evidence the techniques called
macroblock number checking and improved video packet concealment.

Error Detection

The macroblock number checking method performs a smart check to verify the consis-
tency between the current Video Packet (briefly VP) data and the following one. The VP
approach is aimed to provide periodic resynchronization markers to the bitstream. This
allows the decoder resynchronization, when an error has been detected. If the decoder
finds a correct VLC longer than the real one inside the VP, besides quality degradation
there is the risk that the decoder can read subsequent data and then mix information of two
different VPs. This could happen, of course, without detecting any errors. In particular,
in MPEG-4 the composition of a single VP is indicated in Fig.(11.20).

The Resync Marker is followed by this information, in which the first three elements
(from macroblock number to HEC) represent the VP Header:
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Figure 11.21 : Frame obtained with MPEG-4 standard checks, when the decoder read a
VLC longer than the real one.

1. macroblock number: the number of the first Macroblock (briefly MB) contained
in this VP.

2. quant scale: the quantization parameter.

3. Header Extension Code (HEC): additional information.

4. Macroblock Data: video information.

When a VLC longer than the real one is found inside the Macroblock Data, it is easy
to understand that probably the data mixing of two subsequent VPs has happened and this
will degrade the frame quality (see Fig.(11.21)).

To avoid this kind of artifacts, it is important to know in advance, before entirely
decoding the current VP, the position of the next resync marker. In particular, for MPEG-
4, examining the composition of the VP (see Fig.(11.20)), it is noticeable that, to know
how many MBs are contained in the VP, the decoder needs to decode all the VP. To know
this information in advance, the decoder should check that the number of MBs, read in
the Macroblock Data in the current VP, is consistent with the MB number read in the next
VP header. In this case the decoder can detect this kind of error and it can conceal the
whole VP.

More exactly the sequence of the actions is:

1. Read the VP Header in the current VP, obtaining the macroblock number informa-
tion (current mb number).

2. Jump to the next VP, obtaining the macroblock number information (next mb number).

3. Continue decoding current VP, obtaining the number of macroblocks contained in
the current VP (mb in VP).
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Figure 11.22 : Frame obtained using MB numbers checking, with motion compensated
MBs from last frame.

4. If current mb number plus mb in VP differs from next mb number, conceal the
current VP.

In this case the correspondent frame is shown in Fig.(11.22).

Error Concealment

The Annex E algorithm [30] describes the behavior of the decoder error concealment
treatment, making use of the following notations:

1. L: total number of bits for DCT coefficients part in a VP.

2. N: total number of macroblocks (MBs) in a VP.

3. L1: number of bits which can be decoded in a forward decoding.

4. L2: number of bits which can be decoded in a backward decoding.

5. N1: number of MBs which can be completely decoded in a forward decoding.

6. N2: number of MBs which can be completely decoded in a backward decoding.

7. f mb(S): number of decoded MBs when S bits can be decoded in a forward direction
(equal to or more than one bit can be decoded in a MB, f mb(S) counter is up).

8. b mb(S): number of decoded MBs when S bits can be decoded in a backward direc-
tion.

9. T: threshold (90 is used now).
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where:
0 ≤ N1 ≤ (N−1) (11.15)

0 ≤ N2 ≤ (N−1) (11.16)

Depending on the value of (L1+L2) and (N1+N2), we can distinguish the following
four different strategies. More exactly, Strategy 1 is activated when:

((L1+L2) < L) and ((N1+N2) < N) (11.17)

Strategy 2 when:

((L1+L2) < L) and ((N1+N2) ≥ N) (11.18)

Strategy 3 when:

((L1+L2) ≥ L) and ((N1+N2) < N) (11.19)

Strategy 4 when:

((L1+L2) ≥ L) and ((N1+N2) ≥ N) (11.20)

Depending on the activated Strategy, the following actions will be taken:

1. Strategy 1: The first f mb(L1-T) MBs are decoded in forward direction, MBs of
the dark part are concealed and the last b mb(L2-T) MBs are decoded in backward
direction, as indicated in Fig.(11.23).

2. Strategy 2: The first (N-N2-1) MBs are decoded in forward direction, MBs of the
dark part are concealed and the last (N-N1-1) MBs are decoded in backward direc-
tion, as indicated in Fig.(11.24).

3. Strategy 3: The first (N-b mb(L2)) MBs are decoded in forward direction, MBs of
the dark part are concealed and the last (N-f mb(L1)) MBs are decoded in backward
direction, as indicated in Fig.(11.25).

4. Strategy 4: The first min(N-b mb(L2), N-N2-1) MBs are decoded in forward direc-
tion, MBs of the dark part are concealed and the last min(N-f mb(L1), N-N1-1) MBs
are decoded in backward direction, as indicated in Fig.(11.26).

An improvement technique called improved video packet concealment [54], can be
used to improve the above schemes. The main idea of this technique is indicated in
Fig.(11.27). For each Video Packet containing errors, it is possible to determinate a priori
which part of the VP is assumed to be without errors, so just decoded in forward or back-
ward direction (VP concealment limitation, identified by the gray zone) and which part
will be concealed (VP concealment extension, identified by the dark zone). Afterwards,
the application of Annex E shall determinate how to handle the uncertain part (white
zone). Numerical examples of this technique are reported in [54]. Please refer to it for
further details.
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Figure 11.23 : MPEG-4 standard Annex E Strategy 1.
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Figure 11.26 : MPEG-4 standard Annex E Strategy 4.
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Figure 11.27 : Video Packet concealment limitation and extension (X = points in which
errors were detected).

Figure 11.28 : Left: Image decoded with JPEG (compression 50%). Right: Image with
error decoded with JPEG standard.

11.5.2 JPEG
While in MPEG-4 standard a lot of error resilience techniques can be used, as indicated
in previous sections, JPEG standard does not have many possibilities to manage errors.
When an error is encountered in JPEG, we have to skip picture information up to the end
of the picture itself, with a tremendous loss of information (Fig.(11.28)).

The only error resilience technique allowed in JPEG is the resynchronization system.
Similar consideration made for MPEG-4 (about resync marker) can be extended to this
standard.

In JPEG standard, the restart markers (RST) are added to the compressed data between
each restart interval. They have a two bytes value which cannot be generated by the coding
procedures, to be used to resynchronize the decoder. There are 8 unique restart markers
(m = 0 - 7) which repeat in sequence from 0 to 7, starting with zero for each scan, to
provide a modulo 8 restart interval count.

By comparing the expected restart interval number to the value in the next RSTm
marker in the compressed image data, the decoder can usually recover synchronization.
It then fills in missing lines in the output data by replication or some other suitable proce-
dure, and continues decoding. Of course, the reconstructed image will usually be highly
corrupted for at least a part of the restart interval where the error occurred.

Since JPEG is a Variable Length Code (VLC) based standard, when a VLC is longer
than the real one is found inside the compressed data between each restart interval, it is
easy to understand that probably the data mixing of two subsequent restart interval has
happened and this degrade the frame quality. The technique called Macroblock Number
Checking, used for MPEG-4, can be extended also for JPEG standard, as follows [55]:

1. Read the first RSTm.
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Figure 11.29 : Left: Image with error decoded with JPEG standard with resync markers.
Right: Image with error decoded with using Macroblock Number Checking algorithm.

2. Jump to the next RSTn.

3. If n differs from m+1, conceal the compressed data between RSTm and RSTn.

An example of the application of such algorithm is shown in Fig.(11.29). In this exam-
ple a resync marker is used every two lines of decoding macroblocks. While in the JPEG
standard the mixing of two subsequent restart intervals is evident, with the application of
Macroblock Number Checking, two lines of uncorrected decoded macroblocks (the ones
included in the two subsequent restart interval) are identified and concealed re-copying
the previous and sub-sequent correctly decoded row of macroblocks.

11.6 The JPEG XR Image Coding Standard
A new image coding standard, JPEG XR ((ITU-T T.832 — ISO/IEC 29199-2) has been
recently released from JPEG committee; differently than JPEG 2000 it seems to be an ef-
fective alternative to the classic JPEG (see Chapter 11). It is able to manage high dynamic
range (HDR) imagery applications because it supports natively such format. Some of the
advanced peculiarities, already present in JPEG 2000 but never used, such us scalability
(quality, bit-rate), ROI coding are available; also a unified system for both lossless and
lossy coding is present.

The performances with respect its predecessors JPEG and JPEG 2000 are fully com-
parable; for very low bit-rate JPEG-XR is very close in terms of quality to the JPEG2000
but on the other hand its overall complexity is very low. The JPEG committee began the
standardization of JPEG XR technology in 2007. The initial design proposal was submit-
ted by Microsoft, based on its HD photo technology, while the subsequent development
and future evolution of JPEG XR as a standard has been the responsibility of the JPEG
committee.

The core of the encoding engine is the spatial transform that converts the image
data to a frequency domain representation. A lifting-based reversible hierarchical lapped
biorthogonal transform (LBT) is used. The transform requires only a small number of
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integer processing operations for both encoding and decoding. It is exactly invertible in
integer arithmetic and hence supports lossless image representation. The transform is
based on two basic operators: the core transform and the optional overlap filtering. The
core transform is similar to the DCT and can exploit spatial correlation within a block-
shaped region. See [56] for more details.

Of course the success of any standard is driven by a wide range of factors (not only
related to the technological aspects) but the new standard could have a chance especially
for applications requiring more than usual 24 RGB representation.
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Abstract: The image quality depends on compromises made in the design of the algorithms and
devices for image capture, transfer, storage, and display. Quality assessment plays, consequently, a
decisive role to successfully promote image processing algorithms and system performances. The
evaluation of image quality is basically a human issue, but subjective metrics are computationally
expensive and not practical for real-time applications. So, in the last decades, a great deal of
efforts has been put into the development of objective quality metrics able to automatically predict
perceived quality. To design an objective measure capable to be in close agreement with subjective
test is a difficult task because the human visual system has a multifaceted structure and is not
totally known. The tracked problem is to emulate human vision which is a cognitive activity and
not a pure image sensor process. In this Chapter a classification of quality indexes, from classical
to recent approaches is reported. For a better understanding of quality assessment topic, some of
the principal human phenomena involved in the development of objective perceptual metrics are
also explained.

12.1 Introduction
To build an automatic quality measure able to assess the overall quality of a given image
is a very complex task. The difficulties are mainly due to the fact that the image quality
is intrinsically a subjective issue. The more reliable and effective quality assessment
method is the subjective one, but, on the other side, the subjectiveness implies that a
given image could be judged by viewers in different ways. This happens because the
viewer’s ability to express a quality score comes from a complex analysis of the image
made by the Human Visual System (HVS). Many factors are involved in the process of
image quality evaluation, from the physical structure of eye-apparatus to the cognitive
and psychological personal reaction. The majority of these aspects is not totally known,
so many researches are still interested to the image quality topic. The ability of HVS to
assess the image quality without a reference is the most complex visual system behavior to
emulate. The human is able to formulate a judge only by considering how much pleasing
is the perceived sensation derived by looking at the image without the needs of having a
reference, and the satisfaction degree is the final expression of human subjectiveness. In
the last decade many works about automatic quality measures have been proposed and in
the following sections is reported a brief description of the main developments dealing
with the image quality metrics.

12.2 Full, Reduced and No-Reference Approaches
When comparing two images, many are the features used to gauge the overall image
quality as the contrast, the focus, the dynamic range, the noise, the compression artifacts
and so on. The most common criterion to classify quality metrics is based on the avail-
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ability of the original image/video signal, which is considered to be of high quality and
can be used as a reference in evaluating the quality of a distorted image. According to
the amount of information that is available, objective metrics can be classified in: Full
Reference (FR), Reduced Reference (RR) and No-Reference (NR).

Full Reference

Full Reference metric (FR) assesses the quality of a distorted image relatively to a refer-
ence image which is assumed to be an original perfect version of the test image. In this
case both the target image and the distorted one are required. To implement a FR index
is not a complicated task, it regards the measurement of the similarity between two im-
ages [1–3]. The difficulty is to find a measure able to assess a wide range of impairments
that well correlates with the judgment given by a human observer. On the other hand, the
FR metric is not applicable in real-time applications where the reference image is often
not available.

Reduced Reference

Reduced Reference metrics (RR) require the distorted image and partial information about
the reference one. These kinds of metrics are mostly utilized to assess the quality at
the end of a video or image transmission system [4–6]. The encoder, together with the
digital transmission method and the decoder, can produce some lost of quality in the final
reconstructed image or video. Usually, together with the input image, are transmitted also
some parameters relative to the input (compression rate, etc.). These features are used by
the RR metric to assess the quality of transferred images or videos.

No Reference

No Reference (NR) or ’blind’ metrics only require the distorted image. The quality as-
sessment in absence of a reference is a very difficult task and it becomes quite impossible
to evaluate the quality of an image affected by a wide variety of distortion types. The
NR metric works well when it is necessary to assess a specific impairment. Knowing
previously the model of the distortion it is possible to build a metric able to measure
the amount of specific impairment. NR works have been proposed to evaluate the qual-
ity in different fields of image processing as the High-Definition Video [7], or the JPEG
compression [8–11], or the image fusion [12–14].

12.3 Subjective Metrics
The FR, RR and NR, are objective measures of the image quality, i.e., their design is pri-
marily based on extracting and analyzing some specific features or artifacts in the image
and, consequentially, on the automatic formulation of a quality score. On the other hand
for subjective quality evaluation is intended the quality assessment provided by a human
viewer. Due to the complex analysis made by the human brain the subjective evaluation
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is the most accurate way to determine the image quality. Considering that each viewer
has its personal and unique perception of quality, a method to formulate a subjective qual-
ity score consists in the averaging many viewer’s quality judges. The judges should be
collected by using the same evaluation method, the same scale rating and the same en-
vironment condition (room-lighting, type of monitor, distance from monitor, etc.). To
set up a subjective test is expensive both in terms of time and resources and, cannot be
easily performed in real-time. In the recent years the International Telecommunication
Union (ITU) has developed recommendations on subjective quality assessment method-
ologies, which describe the main directions to follow for embedding a subjective quality
evaluation test. One of the most important is the Recommendation BT.500 [15] which
provides the fundamental description of the subjective image and video quality assess-
ment methods, recently replaced by BT.6/150 (2009) [16]. Another important document
for subjective quality assessment is the final report of 2003 [17] provided by the Visual
Quality Expert Group (VQEG). These two important documents are described in the Sec-
tions 12.3.1 and in 12.3.2 respectively.

12.3.1 ITU-R Recommendation BT.500
The VQEG [18], formed in 1997, has given an important contribution to the video and
image quality assessment. The ITU-R BT.500 [15], released by VQEG, explains standard
viewing condition, criteria for observers, test scenes selection and specific assessment
procedures. The method for subjective video and still images quality analysis involves a
group of prior selected human viewers which analyze the video sequence and express their
personal image quality score. The mean of all the collected judges constitutes the Mean
Opinion Score (MOS). The analysis procedure can be described in two main phases.
The former regards the selection of the test video (which are H.263, H.264, and MPEG-2
compressed video sequences, see Chapter 11), the selection of the 20 human viewers, the
set up of the testing environment, and, the selection of the specific method to apply. The
latter phase regards the gathering of all quality scores and the calculation of final MOS.
The viewers formulate their personal judgments about quality in semantic terms, the score
expresses how much unpleasant is the impairment sensation coming from the test image.
The scale proposed in this recommendation is reported in Fig.(12.1). The rank varies in
the range [1-5] where the lower is the score the weaker is the image quality. To validate a
new proposed quality metric, it must be performed on VQEG’s video sequences and, then,
compared with the MOS results. But the VQEG image/video databases are not royalty
free, so the new index is usually provided to the VQEG to be tested on their mandatory
databases, in this way is possible to compare the index results with the subjective ones.
Four are the test methodologies proposed by VQEG:

• Double Stimulus Continuous Quality Score (DSCQS);

• Double Stimulus Impairment Scale (DSIS);

• Single Stimulus Continuous Quality Evaluation (SSCQE);

• Simultaneous Double Stimulus for Continuous Evaluation (SDSCE).
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Figure 12.1 : Scale of MOS.

Double Stimulus Continuous Quality Scale

The Double Stimulus Continuous Quality Scale (DSCQS) method shows to viewers mul-
tiple short sequence pairs, of about 10 seconds, consisting of ”reference” and ”test” se-
quences. The short sequences are presented twice in alternating fashion and in a randomly
order. Moreover, subjects are not informed which the reference sequence is or the test se-
quence is. The viewers should express a judge for each sequence on a continuous quality
scale ranging from ”bad” to ”excellent”. The analysis is based on the difference in rating
for each pair, which is often calculated from an equivalent numerical scale from 0 to 100.

Double Stimulus Impairment Scale

The Double Stimulus Impairment Scale (DSIS) method, differently than before, always
shows the reference before the test sequence, and the two sequences are proposed just
once. In this case viewers know which is the reference and their score should express,
in a continuous way, how much annoying is perceived the impairment on the test. The
evaluation is expressed as one of the five levels of a scale ranging from ”very annoying”
to ”imperceptible” (Fig.(12.1)).

Single Stimulus Continuous Quality Evaluations

The idea of a continuous evaluation is affected by some lacks. In particular, the previous
described methodologies fix, as viewing time duration for the score formulation, a period
of 10s; this is an insufficient interval of time for the viewer to formulate an appropriate
judge relative to the context-related artifacts observed in the scene. To overcome this lack
the Single Stimulus Continuous Quality Evaluations (SSCQE) method has been proposed.
Performing the SSCQE the viewers watch a program of typically 20-30 minutes instead
of seeing separate short sequence pairs. Using a slider, the subjects continuously rate the
instantaneously perceived quality on a scale ranging from ”bad” to ”excellent”.
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Simultaneous Double Stimulus for Continuous Evaluation

The SSCQE method tries to reproduce the viewing condition of a real situation by not
using a reference image sequence. However, there are cases where is requested to have a
fidelity measure, hence reference conditions must be introduced. The Simultaneous Dou-
ble Stimulus for Continuous Evaluation (SDSCE) method has been developed starting
from the SSCQE, by making slight variation concerning the way of presenting the images
to the subjects and the used rating scale. The method can be suitably applied to all those
cases where fidelity of visual information affected by time-varying degradation has to be
evaluated.

The four described methods generally have different application. The DSCQS, be-
ing sensitive to small differences, is the preferred method when the quality of test and
reference sequences is similar. The DSIS is suitable for evaluating clearly visible impair-
ments such as artifacts caused by transmission errors. The SSCQE and the SDSCE have
been designed in order to relate well to the time varying quality of today’s compressed
video system. The methods reported in [15] are all video testing procedures which can be
adapted in the still domain, i.e., the assessment made on a video can be reported to each
single frame.

12.3.2 The 2003 VQEG’s Report
Another important document relative to the image quality assessment, written by the
VQEG, is the final report of 2003 [17]. It introduces some fundamental concepts today
widely used to build a new objective metrics, in particular, the report is articulated in two
parallel sections. The first one explains a new subjective test, and, the second one sug-
gests methodologies to evaluate the metric accuracy and consistency. The subjective test
is implemented by using the DSCQS according to which the viewers should express their
opinion score both for the source and the test sequences. To build a model sufficiently
independent by specific impairment, two video sequences affected by a wide range of
distortion types are processed. The final judgment is expressed as a difference score be-
tween the rating for the reference sequence minus the rating for the test one (Differential
Mean Opinion Score - DMOS). The second part of the test introduces new methodologies
for correctly design a metric. An Objective Metric (OM) should be able to predict the
subjective score with a low error, furthermore it should predict the degree to which the
models prognostication agrees with the relative magnitudes of subjective quality ratings,
and, finally, it should be robust in presence of different impairments. A well designed
metric should satisfy the following statistical properties:

• PREDICTION ACCURACY: the ability to predict the subjective quality score with
low error;

• PREDICTION MONOTONICITY: the ability to predict the degree of model results
with the subjective score;

• PREDICTION CONSISTENCY: the degree of robustness of the model with respect
to a wide range of impairments.
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These attributes are verified not directly on the OM but on a function of OM, the so
called ”predicted DMOS”. This is dictated by the observation that the outputs of the OM
should be correlated with the viewer Difference Mean Opinion Scores in a predictable
and repeatable manner. So, a nonlinear regression function was used to transform the
OM values to a set of predicted-DMOS (DMOSp):

DMOSp =
b1

1+ e(−b2·(OM−b3))
(12.1)

where b1, b2 and b3 are determined by the logistic regression of the OM with the DMOS.
This kind of function has been introduced to better handle the problem of non-linearity
due to the subjective rating. The OM’s prediction performance in terms of accuracy,
monotonicity and consistency, is evaluated on the sets of subjectively measured DMOS
and predicted DMOSp, by using metrics specified in [17].

12.4 Objective Metrics
Objective measures are used to estimate the image quality in an automatic manner, usually
by measuring the difference between a reference image and a distorted one. Indexes
belonging to the FR class are the Signal to Noise Ratio (6.2), the Mean Squared Error
(MSE) and the Peak Signal-to-Noise Ratio (PSNR). The MSE between a reference image
I and its distorted version I, is defined as:

MSE =
1

N ·M
N

∑
n=1

M

∑
m=1

[I(n,m)− I(n,m)]2 (12.2)

where (M×N) is the image size. It should be observed that the MSE strongly depends on
the image intensity scaling. A mean-squared error of 100.0 for an 8-bit image (with pixel
values in the range 0-255) looks dreadful; but a MSE of 100.0 for a 10-bit image (pixel
values in [0,1023]) is barely noticeable. The PSNR, measured in decibel (dB), avoids this
problem by scaling the MSE according to the image range:

PSNR = 10log10
S2

MSE
(12.3)

where S is the maximum pixel value.
Both the MSE and the PSNR are indexes widely used because easy to compute, and, ca-
pable to give an effective difference value between a signal and its distorted version. On
the other hand, the MSE and PSNR are not considered ”ideal” quality measures, it can
happen that one image with a PSNR of 20dB may look much better than another image
with a PSNR of 30dB. This happens because the PSNR is not a reliable predictor of the
perceived visual quality. Two examples of this deficiency are showed in Fig.(12.2) [19].
The first row shows a reference image (Fig.(12.2(a))) and two tests obtained by using
two different quantization techniques, the first one, indicated as Cut Off (CO), uses a
coarse truncation of the intensity values from 8 to 4 bits, cutting off the 4 less significant
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bits; the other one is the Improved Gray Scale (IGS) technique [20], which avoids the
coarse approximation by adding a pseudo-random noise before truncation. The second
example shows a reference image (Fig.(12.2(d))) which has been distorted by adding im-
pulsive noise and successively cleared by using two different de-noising algorithms. The
two examples give an idea of the limits of PSNR in terms of correlation with subjective
evaluation. This misleading evaluation happens because the PSNR and the MSE can be

(a) Reference image A (b) Image A quantizated by
the CO method - PSNR = 35

(c) Image A quantizated by
the IGS method - PSNR = 32

(d) Reference image B (e) Image B noised by a
blurring noise - PSNR = 27

(f) Image B noised by an
impulsive noise - PSNR = 29

Figure 12.2 : Two example where the PSNR fails. In both cases, the PSNR does not
well correlate with subjective quality preference.

considered fidelity metrics which are based solely on a quantitative mean. As explained
in [21], there are some implicit assumptions to make when the PSNR or the MSE are used
as fidelity criterion:

• ”Signal fidelity is independent of temporal or spatial relationships between the sam-
ples of the original signal”. It means that if the reference image and the distorted
one are randomly re-ordered in the same way then their MSE or their PSNR remain
the same.
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• ”Signal fidelity is independent of any relationship between the original signal and
the error signal”. It means that, adding a given error signal to an original one, the
PSNR or the MSE remain the same.

• ”Signal fidelity is independent of the signs of the error signal samples”.

• ”All signal samples are equally important to signal fidelity”.

These assumptions fix some important limitations relative to the interaction of signal with
the error. But, the point is that not one of all above assumptions is relevant in the context
of measuring the visual perception of image fidelity.

12.5 Perceptual Objective Metrics
The purpose of objective metrics is to automatically assess the quality of images in agree-
ment with human judgments. Many different objective criteria have been proposed in
literature, some approaches are simply based on statistical properties of the image, others
are based on complex models of the HVS. With the terms ”perceptual objective metric”
here is intended metrics which model some HVS behaviors. The design of a perceptual
objective metric is a very difficult task because the HVS is not totally known, and there
are also some of them which are quite impossible to emulate (i.e., the capability to judge
an image without having a reference). Anyway, for planning a perceptual objective metric
it is necessary to be familiar with the principal phenomena concerning the human vision.
A light stimulus which hits a human eye activates a mechanism of signal interpretation
which involves many aspects, as the spatial frequency sensitivity, the contrast masking
or the semi-local masking, the pooling, etc. The brain elaborates the incoming informa-
tion and formulates a final quality score according to its personal subjectiveness. To well
understand which mechanisms are involved on the subjective quality assessment a brief
overview of some of them is reported below.

12.5.1 Lightness Perception
The human visual system is a dynamic system able to adapt to a large range of light
intensities. This phenomenon is due, essentially, to three mechanisms:

• the mechanical variation of the papillary aperture;

• the chemical processes in the photoreceptors;

• the adaptation at the neural level.

These mechanisms, together with many others, determine a very strong non linear be-
havior of the visual system, as the not linearly perception of the real luminance of the
observed object. Many subjective experiments have been made in order to understand
this behavior, here is described one of the most simple. Observers were supplied with
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Figure 12.3 : Non linear relationship between equal-step gray colors and perceived lumi-
nance.

about 100 tone-cards of a different gray color. They were asked to select 10 of them, so
that they span the range between black and white in an equidistant manner. The sensa-
tion associated with a tone is taken to be the number of steps from black, so the curve of
steps-number versus luminance is showed in Fig.(12.3).

The relationship is clearly non-linear. Many authors had studied this aspect of visual
system using psycho-visual experiment in order to tune their proposed formulas. Two
functions widely used in literature are the ones proposed by Daly [22] and by Mannos-
Sakrison [23]. The equation (12.4) is a simplified version of the Daly’s formula, obtained
by assuming that the adaptation level for an image pixel is solely determined from that
pixel (L’ is the lightness perceived and L represents the lightness of the pixel expressed in
cd/m2, see Fig.(12.4)). In the Mannos-Sackrison’s formula (12.5) the lightness perceived
L’ is a function of the mean luminance level Lm. The Fig.(12.5) shows the Mannos-
Sakrison formula in the pixel range [0,255].

L′ = L/(L+12.6L0.63) (12.4)

L′ = (L/Lm)0.333 (12.5)

12.5.2 Color Encoding
The perception of the color is a complex physical mechanism of HVS. The main actors are
the photoreceptors which are specialized neurons that make use of light-sensitive photo-
chemicals to convert the incident light energy into signals that can be interpreted by the
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Figure 12.6 : Normalized cone sensitivity functions of photoreceptors with respect the
visible electromagnetic spectrum; the colored lines are relative to the L, M, and S cones,
while the dashed line is relative to the rods.

brain. There are two different types of photoreceptors, namely rods and cones. Rods
are responsible for scotopic vision 1 at low light levels, while cones are responsible for
photopic vision 2 at high light levels. Even if the rods are very sensitive light detectors
and sample the retina very finely, the visual acuity under scotopic conditions is poor. This
happens because all the rods signals are conveyed onto a single neuron, this corresponds
to a high sensitivity but, also, to a low resolution. The cones can be classified in three
types according to their photo-chemicals spectral sensitivity: L-cones, M-cones, and S-
cones. The L-cones are sensitive to the long wavelenght, the M-cone to the medium and
the S-cone to the short ones. They form the basis of color perception. The absorption
spectra of the three cone types [24] are shown in Fig.(12.6).

Physiological experiments show that cones have an excitatory or an inhibitory effect
on ganglion cells in the retina and on cells in the lateral geniculate nucleus. Depending on
the cone types, certain excitation/inhibition pairings occur much more often than others:
neurons excited by ”red” L-cones are usually inhibited by ”green” M-cones, and, neurons
excited by ”blue” S-cones are often inhibited by a combination of L- and M-cones. Hence,
the receptive fields of these neurons suggest a connection between neural signals and
perceptual opponent colors. Although many studies on the color perception of HVS have

1The scotopic vision is the eye vision under low levels of illumination (10−2 to 10−6 cd/m2), it is
produced exclusively through rod cells and it is completely lacking in color.

2The photopic vision is the eye vision under well-lit conditions, it allows color perception provided by
the cone cells.
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Figure 12.7 : Photo-receptors combine color information in one achromatic and two
chromatic channels.

been done, the right opponent-color encoding is still a subject to debate (Fig.(12.7)).
The Fig.(12.8) shows a simple experiment able to demonstrate, in a practical way, the

mechanism of opponent color in our visual system, the example helps to understand how
the HVS build the named ”opponent after image”. The ”after image” can be visualized
following the next steps:

1. fixate upon the black spot in the center of the yellow circle surrounded by the blue
square for at least 30 seconds;

2. move your gaze to fixate the black spot in the white area (on the right);

3. you will see the ”after image” in the opposite colors (a blue circle into a yellow
square).

12.5.3 Opponent Color Space
The RGB color spaces are device dependent and not perceptually linear, so, even if widely
used for coding digital images, they cannot be used for HVS based models. The RGB are
usually converted into a perceptually linear and device independent color space (e.g., the
sRGB). According to the opponent theory, the sensation of red and green, as well as blue
and yellow, are processed in separate visual pathways [25, 26], so, in the opponent color
space three channels are defined as: black-white (BW), red-green (RG) and blue-yellow
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Figure 12.8 : Example of hue-cancellation experiment.

(BY). The sRGB is converted in opponent color space through a series of transformations.

⎡
⎣ sR

sG
sB

⎤
⎦→

⎡
⎣ X

Y
Z

⎤
⎦→

⎡
⎣ L

M
N

⎤
⎦→

⎡
⎣ BW

RG
BY

⎤
⎦ (12.6)

Firstly, the input image is converted from the RGB color space to CIE XYZ tristimulus
which is device independent.

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣ 0.4306 0.3415 0.1784

0.2220 0.7367 0.0713
0.0202 0.1295 0.9393

⎤
⎦×

⎡
⎣ sR

sG
sB

⎤
⎦ (12.7)

Secondly, the tristimulus values are converted in the L, M and S cones responses by using
the following formula:

⎡
⎣ L

M
S

⎤
⎦ =

⎡
⎣ 0.240 0.854 −0.044

−0.389 1.160 0.085
−0.001 −0.354 0.573

⎤
⎦×

⎡
⎣ X

Y
Z

⎤
⎦ (12.8)

Finally, the LMS values are converted to the opponent color space WB, RG and BY, by
using the following transformation:

⎡
⎣ BW

RG
BY

⎤
⎦ =

⎡
⎣ 0.990 −0.106 −0.094

−0.669 0.742 −0.027
−0.212 −0.354 0.911

⎤
⎦×

⎡
⎣ L

M
S

⎤
⎦ (12.9)

Differently to some widely used color spaces for quality metric design, as the CIE L*a*b
and the CIR L*u*v [27], the opponent color space has the advantage that it well sepa-
rates the color perception from the pattern sensitivity, this aspect contributes to a suitable
modularity of the quality metric model.
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12.5.4 Luminance Contrast

The visual system detects changes in luminance rather than absolute values. Usually the
luminance contrast is expressed as a ratio of the type:

Luminance Contrast =
Luminance change

Luminance adaptation
(12.10)

The rationale behind this form is that a small difference is negligible if the average
luminance is high, while the same small difference matters if the average luminance is
low.

Different formulas describe the luminance contrast and, most of them, reflect the fact
that the adaptation state of the eye is affected differently by various stimulus patterns.

One of the most known luminance contrast definition is the Weber one (12.11), where
the visual stimulus is a small feature present on a large uniform background, i.e., the
average luminance is approximately equal to the background luminance:

CW =
L−Lbackground

Lbackground
(12.11)

where L and Lbackground represent, respectively, the luminance of the feature and the lu-
minance of the background.

When the visual stimulus is a sine wave grating than the Michelson’s formula is used.
This formula expresses the contrast as the ratio between the difference and the sum of
light and dark bar luminances.

CM =
Lmax −Lmin

Lmax +Lmin
(12.12)

In the Michelson’s equation (12.12) Lmax and Lmin are respectively the maximum and
minimum luminances of the bars of the grating. This formula is commonly used for
patterns where both bright and dark features are equivalent and take up similar fractions
of the area. The denominator represents twice the average of the luminance.

Quantitative comparisons among the various contrast measures are not properly cor-
rect because they are designed to describe different spatial patterns and have different
mathematical behaviors. Nevertheless, under simplified and limited conditions it can be
acceptable to perform few comparisons. One case is when the feature and the background
appear to have lightness ranging from black to white. The Fig.(12.9) shows a comparison
between Weber and Michelson laws, in particular the red curve represents the Weber con-
trast obtained by fixing a feature of 50 luminance and varying the background in the range
[55,255]. Similarly, the green curve represents Michelson values obtained superimpos-
ing a dark bar of 50 luminance on a background varying also in the range [55,255]. The
difference between these two measures is small when contrasts are low, but as contrasts
increase, the difference can be substantial. Considering a Weber contrast of 50%, ob-
tained with a 100 luminance background, than we can have the same Michelson contrast
by increasing the light bar (or the background for this example) till 150 luminance.
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Figure 12.9 : Weber vs Michelson example. In the Weber experiment the feature has been
fixed at 50 luminance and the background varies in the range [55,255]. Analogously, in
the Michelson experiment the dark bar has been fixed at 50 luminance and the white bar
(or background) varies also in the range [55,255].

The human visual system is sensible, in a different way, to stimulus frequencies. The
Fig.(12.10) shows the ”Champell-Robson” chart [28] used to demonstrate, in a very sim-
ple way, how the HVS perceives the contrast. The chart shows the pixel values which
have a sinusoidal trend along the horizontal direction, and, the frequency increases ex-
ponentially from left to right, while the contrast decreases exponentially from bottom to
top. The minimum and the maximum luminance remain constant along a given horizontal
line through the image. The alternated bright and dark bars should appear to have equal
height everywhere in the image, but our visual system perceives bars in the middle taller
than bars at the sides. This happens because human eyes are more sensitive to average
frequencies than to low or high ones.

The Fig.(12.11) shows the Contrasts Sensitivity Function (CSF) (12.13) proposed by
Mannos-Sakrison.

CSF( f ) = 2.6 · (0.0192+0.114 f ) · e(−0.114 f )1.1
(12.13)

The frequency is usually expressed in cycle for degree (cpd). The cycle number
indicates how many periods of the sinusoidal signal are shown (Fig.(12.12)). It can
be observed that the contrast sensitivity is maximum for frequencies of about 4-6 cpd
(Fig.(12.11)).

Another aspect related to the contrast perception is the HVS capability to perceive
small differences in luminance; the lower variation (i.e., the minimal difference that can
be perceived) depends on the background luminance. This minimum difference is called
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Figure 12.10 : ”Champell-Robson” chart.
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Figure 12.11 : Mannos-Sakrison formula of Contrast Sensitivity Function.

Just Noticeable Difference (JND) and it can be measured with a simple psycho-visual
experiment.

For instance, the visual experiments for the case of Weber contrast is carried on as
follows. A luminous patch is projected on a uniform background having La lightness.
The patch intensity is slowly increased until it will be discernable from the background.
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Figure 12.14 : Blackwell’s JND.

The difference between La and the visible patch is the JND. Hence, a superimposed patch
having La + JND(La) luminance is discernible, but a patch of luminance La + ε , where ε
is lower than JND(La), is not visible (Fig.(12.13)).

Many JND formulas have been proposed in literature. Blackwell [29] established the
relationship between the adaptation luminance and the JND using a briefly flashing dot
on a uniform background (Fig.(12.14)):

JND(La) = 0.0594 · (1.219+L0.4
a )2.5 (12.14)

A more complex function (12.15), which accounts for both rod and cone responses
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Figure 12.15 : Ferwerda’s JND.

and tuned for the whole range of human vision, has been proposed by Ferwerda [30](Fig.(12.15)):

JND(La) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2.86 if log(La) < −3.94
(0.405 · log(La)+1.6)2.18 −2.86 if −3.94 ≤ log(La) < −1.44
log(La)−0.395 if −1.44 ≤ log(La) < −0.0184
(0.249 · log(La)+0.65)2.7 −0.72 if −0.0184 ≤ log(La) < 1.9
log(La)−1.255 if log(La) ≥ 1.9

(12.15)

12.5.5 Masking

The masking effect is the visual system behavior according to which the perception of a
signal A is somehow inhibited by a masking signal B. In the following is briefly discussed
the interaction between a signal and a masker.
Signals and maskers can interact in different ways: two common masking effects are the
contrast masking and the activity masking. The contrast masking regards the interaction
of a signal and a masker which can have, or not, similar properties or appearance. The two
examples of Fig.(12.16) show two sinusoidal patterns which are superimposed to create
a third image. If the masker is not able to hide the signal, the third image is different to
the first two. If the masker successfully hides the signal, the final third image appears like
the masker itself. In the first example of Fig.(12.16(a)) the masker and the signal have
the same orientation but different frequencies, in this case, the masking happens success-
fully because the final image appears equal to the masker image. In the second example
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Figure 12.16 : In the first example (a) the masker successfully hides the signal; in the
second example (b), where the signal and the masker have different frequencies and ori-
entation, the masking has a bad result.

Fig.(12.16(b)) the masker and the signal have different orientations and frequencies, so
the masking has a bad result.

The analysis of masking effect is bounded to the ”multi-channel theory” according to
which the HVS perceives visual information via various parallel channels. These channels
differ in terms of their spatial and spectral frequencies as well as their orientation. The
large variety of existing masking models can be distinguished by the way they combine
the information of the different channels. Models that consider only masking effects
within a channel are called intra-channel, while models that account also for masking
between different channels are called multi-channel masking models.
The activity masking, also called entropy masking, is another phenomenon that is closely
linked to contrast masking. The basic idea is that a concentrated distortion signal is easily
recognized in a smooth and homogeneous zone, while it is somehow hidden in an active
region. The Fig.(12.17) shows this effect. In both images (a-b) the same distortion signal
was introduced, but, while it is easy to see it in the top image, it is hidden in the bottom
one. The local surround of the flowers (see Fig.(12.17(b))) is very ”active” and the HVS
needs more time to pick up the distortion. Due to its property, the activity masking is a
concept of great relevance for image compression applications. The difference between
models for contrast and activity masking lies in its spatial support. Both explain the
reduced sensitivity by the presence of strong contrasts. However, contrast masking is
typically applied in a point-wise fashion. That means that the contrast at position (x,y)
indicates how large the error (for example the quantization error) may be at the same
location, so much to not be perceptible. The activity masking considers an extended local
surround for the prediction of the visibility of the distortion signal. Sometimes the two
effects can no longer be separated and are combined in the same masking model.
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(b)

Figure 12.17 : The local surround of the flowers in the image (b) is very active and the
HVS needs more time to pick up the distortion.
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Figure 12.18 : Search arrays stimuli.

12.5.6 Visual Attention (Saliency)

Visual attention is the ability of HVS to filter out redundant visual information and to
detect the most salient parts of the input visual stimulus [31]. This is a really complex
process since the simultaneously identification of all the interesting targets in one’s visual
field involves many anatomical areas of the brain. The HVS capability to focus on the
salient part of the observed image is supported by the fact that early stages of visual
processing quickly distinct some particular stimuli from among other items or locations.
Our brain is able to rapidly compute salience in an automatic manner and in real-time over
the entire visual field. The visual salience is the capability to select a location sufficiently
different from its surroundings to be worthy of your attention. Visual salience is not a
simple physical property of a visual system but is the consequence of an interaction of
a stimulus with other stimuli, as well as with a visual system (biological or artificial).
Below are reported two simple examples of so-called search arrays stimuli; these images
contain many items, one of which should appear to the reader as highly visually salient.

In the left image there are many patterns all having the same direction and the same
color, except the green one. The image is very simple and the HVS does not need to scan
the picture to discern the unique green pattern from all the others called ”distracters”. The
right image shows many blue and green bars, one of each is different from all the others.
The visual attention mechanism, in this case, needs more time to individuate the unique
bar called ”conjunction-target” which is the only one green bar having the same direction
of all blue bars. The essence of salience lies in enhancing the neural and perceptual
representation of locations whose visual statistics significantly differ from the broadly
surrounding image statistics in some behaviorally relevant manner. This explains why
for the first image in Fig.(12.18) the visual attention focuses on green bars immediately,
this happens because all the other bars are totally different in color. Thus, a way for
modeling the visual attention is to extract an image map which well represents the target
for attention.

   

Quality Metrics Image Processing for Embedded Devices   331 

   



12.5.7 Pooling
The light stimulus is elaborated by HVS in many channels and its interpretation involves
different areas of the brain. This multi-channel signal decoding mechanism can be emu-
lated by collecting and combining each single channel response in a unique final response.
This process is known as pooling. The human ability to handle all together the input
signals and how it collects data in a final interpretation is not a totally known process.
However, when a metric is planned, usually, after a first step oriented to extract some im-
age distortion maps, is foreseen a final pooling step employed to combine the distortion
maps into a single quality score. In this section the Minkowski summation [32], which
is a mathematical formula widely used in literature to emulate the pooling step, is ex-
plained. In psychological tests, where the stimulus consists of two or more component
sinusoidal gratings, the detectability of the compound stimulus is estimated by a nonlinear
(weighted) summation of the detectability of its components. The summation rule known
as Minkowski summation is expressed by the following:

Sc = (
n

∑
i=1

Sm
i )1/m (12.16)

where Sc is the sensitivity for the compound stimulus, Si is the sensitivity to each
component stimulus, n is the number of components and m is the summating Minkowski
exponent. Robson and Graham [33] showed that a Minkowski exponent of approximately
3.5 yielded the strongest predictions in a number of grating detection tasks. The useful
applicability of Minkowski summation to predict thresholds for composite stimuli is clear,
but the mechanism is only hypothesized. The summation rule has generally been inter-
preted as describing probability summation. The probability of detecting a composite
stimulus (Pc) would be calculated from the probabilities of detecting the n components
(Pi) independently.

Pc = 1−
n

∏
i=1

(1−Pi) (12.17)

Yet the question remains whether this straightforward but powerful model of detection
processes can be extended to even more realistic viewing situations.

12.6 Perceptual Objective Metrics
Metrics which build a score emulating some psychophysical features of the HVS as the
perception of blockness, blurring, lack of dynamic range, loss of high frequencies etc.,
are referred as perceptual objective metrics. The first works present in literature propose
model of some HVS behaviors based on formulas totally independent of subjective pa-
rameters coming from experiments. These first indexes are essentially based on some
statistical properties which characterize the image. Today, the score formulated by per-
ceptual objective metrics is typically based on parameters tuned by subjective experi-
ments. In the following section some selected techniques which have provided significant
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contributes to the image quality assessment are described. A brief description of one of
the first proposed perceptual objective metric (UIQ) [3] and its evolutions (SSIM [1], LC-
SSIM [12]) is reported. Also, one of the latest perceptual quality metrics [34], which is
based on some of the HVS behaviors described in this chapter (CSF, masking, pooling
etc.) is discussed.

12.6.1 Universal Index Quality
The universal quality index (UIQ) [3] is one of the first perceptual objective full reference
metrics which tries to model some HVS properties by using simple mathematical formu-
las not subjectively tuned. The UIQ is based on the assumption that the HVS is highly
sensitive to the image structural information, therefore, a measure of structural similarity
should be a good approximation of the perceived image quality. To realize a ”universal”
metric, the authors designed the index assuming that any image distortion can be modeled
by taking in consideration three factors: the loss of correlation, the luminance distortion
and contrast distortion. The (12.18) shows the final UIQ score formula:

UIQ =
σxy

σxσy
· 2xy
(x)2 +(y)2 ·

2σxσy

σ2
x +σ2

y
(12.18)

In the equation (12.18) the x and the y are the original and the test image signals, while
x and y are their mean values, σx, σy are the variances, and σxy is the covariance:

x = {xi | i = 1,2...,N} y = {yi | i = 1,2...,N}

x =
1
N

N

∑
i=1

xi y =
1
N

N

∑
i=1

yi (12.19)

σ2
x =

1
N −1

N

∑
i=1

(xi − x)2 σ2
y =

1
N −1

N

∑
i=1

(yi − y)2

σ2
xy =

1
N −1

N

∑
i=1

(xi − x)2(yi − y)2

The first element in (12.18) measures the correlation degree between x and y. It range
in [-1,1] and the best value is obtained when σx = σy. The second element, ranging in
[0,1], measures how similar are x and y in terms of luminance and it is equal to 1 only if
x = y. The third element measures how similar are in terms of contrast the two images;
in fact σx and σy can be considered an assessment of the contrast of x and y. Its range
is defined in [0,1] and its max value, equal to 1, is achieved if and only if σx = σy. The
maximum value achieved by UIQ is equal to 1 and it is obtained when the two images,
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x and y, are identical. The UIQ is a simple mathematical definition of structural image
information and no human visual system model is explicitly employed. Also in (12.18) no
subjectively tuned parameters are contemplated. Its consistency with subjective quality
measurement is some time better than the widely used mean squared error, or the PSNR,
but fails when tested on a wide range of impairments.

12.6.2 Quality Measure for Image Fusion
Since image signals are generally non-stationary, the authors of [13] suggest to measure
the image quality index UIQ over local regions and then combine the different result into a
single measure. This choice permits to weight the final score by taking into consideration
the saliency information, which is a measure of the local window relevance, in terms of
contrast, variance, entropy, etc. This metric is implemented for image fusion and is used to
evaluate multi-resolution algorithms performance. In [13], authors work on local window
w to compute saliencies s(a|w) and s(b|w) of the two input images (a and b). From local
saliencies, the local weights for both images are then computed using the formula:

λa(w) =
s(a | w)

s(a | w)+ s(b | w)
(12.20)

The λb(w) weights are computed similarly to (12.20), the weights (λa, λb) range in
[0,1]. The quality score for the image fused f is defined as:

Q(a,b, f ) =
1

|W | ∑
w∈W

(λa(w)Q0(a, f | w)+λb(w)Q0(b, f | w)) (12.21)

It is evident that if, for example, λa is larger than λb, the image a will give a bigger con-
tribution than b to the final score computation. The authors consider also the concept of
salient information analyzing the entire image. So, a further coefficient c(w) is introduced
and the final score is give by the formula:

Qw(a,b, f ) = ∑
w∈W

(c(w)λa(w)Q0(a, f | w)+λb(w)Q0(b, f | w)) (12.22)

where:

c(w) =
C(w)

∑w∈W C(w‘)
and C(w) = max(s(a | w),s(b | w)) (12.23)

The C(w) is the overall saliency of a window. The quality index has a dynamic range
of [-1,1]. The closer the value is to 1, the higher is the quality of the composite image.

12.6.3 Structural Similarity Index Metric
An updated version of the UIQ is the Structural Similarity Index Measure (SSIM) [12]
which is still a full FR based on the three components of the UIQ equation (12.18). The
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SSIM has the following expression:

SSIM =
[

2xy+C1

(x)2 +(y)2 +C1

]α
·
[

2σxσy +C2

σ2
x +σ2

y +C2

]β

·
[

σxy +C3

σxσy +C3

]γ
(12.24)

The constant C1 is calculated to avoid instability when x2 + y2 is very close to zero, it
is calculated as C1 = (K1L)2 where K1 � 1 and L is the dynamic range of the pixel. The
constant C2 = (K2L)2 and C3 = (K3L)2 are, as the C1, non negative small constant. The
parameters α , β and γ are used to differently weight the three components (luminance,
contrast and correlation). In case of α=β=γ=1 then the SSIM corresponds to UIQ. The
SSIM index ranges from [0,1], the closer is the SSIM to one the more similar is the test
to the reference image.

12.6.4 Luminance and Contrast SSIM
In [12] a NR quality metric for the evaluation of image fusion algorithm’s performances
is proposed. It is based on the SSIM model and it handles the problem coming from the
pixel dependency ignored by previous works as [13]. The problem of the leakage, ac-
cording to which the spatial profile of a single pixel goes beyond borders of the cell in
which it is conceptually localized, is an important issue to handle and, the assumption of
pixel’s independence oversimplifies the analysis related to the quality assessment. In [12]
authors modify the second and the third elements of SSIM (12.24) introducing dependen-
cies between pixels. The luminance pixel contribution to its neighbors has a Gaussian
distribution centered in (io, jo):

Θ(i, j) ∝
1

2πσ2e−
(i−i0)2+( j− j0)2

2σ2

(12.25)

were σ varies from display to display. The global image luminance can be computed
by summing each luminance relative to each local window (12.26).

L(i0, j0) = ∑
i, j

l(i, j) (12.26)

The contrast is estimated on a (3×3) block size window centered in (i0, j0), and it is
computed as the ratio between the difference of the local maximum and local minimum
and the difference of the global maximum and global minimum (12.27).

C(i0, j0) =
max(block)−min(block)
max(image)−min(image)

(12.27)

The luminance and contrast similarity between the source image a and the fused image
f , are calculated as following:

ln(i, j) =
2La(i, j)L f (i, j)

C2
a(i, j)+L2

f (i, j)
cn(i, j) =

2Ca(i, j)Cf (i, j)
C2

a(i, j)+C2
f (i, j) (12.28)
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Figure 12.19 : Block-scheme of SLVM.

Substituting the ln and the cn in the equation (12.24), the SSIM formula becomes:

LCSSIM = [s(i, j)]α · [ln(i, j)]β · [cn(i, j)]γ (12.29)

12.6.5 Wavelet Based Image Quality Metric
In latest years many perceptual objective metrics have been proposed, here is discussed
a technique which focuses on the concept of semi-local masking which is quite different
from the contrast masking. While the contrast masking regards the analysis of visibility
dependence to the contrast value, the semi-local masking limits this analysis to the neigh-
borhood characteristics. The semi-local masking is a more accurate model of masking
which allows to analyze the visibility threshold behavior when very complex images, as
natural ones, are treated. The method on [34] has been selected, first to discuss about the
semi− local masking which is an accurate model of the contrast masking, and, second,
to discuss about a quality index which is based on many of the HVS properties discussed
in this chapter as the low-level perception, the spatial frequency sensitivity, the contrast
masking and the semi-local masking and, finally, the pooling (Fig.(12.19)).

Firstly, the adaptation to human vision system process, which is activated when dif-
ferent levels of light hit the eye is taken into account. Then, a sub-band decomposition,
by using the Discrete Wavelets Transform (DWT) (Cohen-Daubechies-Feauveau), is per-
formed to evaluate the multi-channel HVS model. The spatial frequency sensitivity of the
HVS is simulated using the contrast sensitivity function proposed by Daly. In particular,
each coefficient c(l,o) of the equation (12.30) is normalized by the CSF Daly’s formula.

cl,0(m,n) = f (cl,0(m,n) ·CSF) (12.30)

In (12.30) l is the decomposition-level number and 0 is the orientation.
Authors test four masking functions:

1. Contrast masking by using Daly’s model

Tl,0(m,n) = (1+(k1 · (k2· | cl,0(m,n) |)s)b)1/b (12.31)

2. Semi-local masking by modifying Daly’s model

Tl,0(m,n) = (1+(k1 · (k2· | cl,0(m,n) |)s(m,n))b)1/b (12.32)
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where
s(m,n) = S +Δs(m,n) ∈ [0.65;1] (12.33)

3. Intra-channel Nadenau’s model

Tl,0(m,n) = max(1,cl,0(m,n)ε) (12.34)

4. Intra-channel Nadenau’s model with semi-Local Masking

Tl,0(m,n) = max(1,cl,0(m,n)ε) · (1+ωΓ) (12.35)

where ωΓ is the term which takes in consideration the influence of the neighborhood
of the (m,n) position.

Being not the focus of the argument, the reader can found more details about the
previous four formulas and about their specific parameters in [34].

The final step of pooling (Minkosky’s formula) is performed on the data coming from
the different decomposition levels of both the reference and the test images. Two are the
pooling outputs: a perceptual distortion map and a final quality score. The performance
of the four proposed metrics are evaluated by MOS obtained by conducting three subjec-
tive quality assessment experiments in normalized conditions as suggested by ITU-R BT
500.10. A psychometric function f (Q) is used to transform the objective quality score Q
in predicted MOS (MOSp) and, as recommended by the VQEG, the perceptual objective
quality metrics are evaluated using three performance indexes: the linear correlation co-
efficient (CC), the Spearman Rank Order Correlation coefficient (SROCC), and the Root
Mean Square Error (RMSE). For completeness, the authors performed also the PSNR and
the SSIM. Final results highlighted that the perceptual multi-channel model outperforms
the PSNR and the SSIM and, moreover, the use of the semi-local masking both for the
Daly’s and the Nadenau’s formula, consistently increases the performance of the model
in terms of CC, SROCC and RMSE. In conclusion, it can be observed that masking effect
is a complex visual system phenomenon that should be accurately represented, and, as
demonstrated by the discussed work, the semi-local masking has a really positive impact
in image quality assessment.

12.7 Feature Trends and Conclusion
One of quality image assessment targets is to develop NR metrics. In latest years the
trend is to plan NR indexes for measuring specific impairments, as ones related to the
High Definition standard [7], other works regard the development of indexes to assess the
robustness of digital watermarking systems [35]. With the increasing importance of the
networks infrastructure, many works have faced the problem to develop automatic indexes
for quality assessments of videos delivered over the network [36, 37]. Specifically, for
evaluating the quality of compressed videos many works have been proposed [9, 38, 39].
Another trend, in quality assessment, regards the use of perceptual quality indexes for
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tuning image processing algorithms or systems. For example, many studies try to im-
prove the performance of image compression standard. These methods, defined ”quality
constrained quantization algorithms”, optimize the quantization step by using the quality
score provided by an objective perceptual metric [40]. Metrics to classify videos into
groups have been proposed [41], other works regard the improvement of super-resolution
algorithms [42]. The image quality assessment topic is object of interest and attention
because it is considered a valid support to successfully promote image quality products
and, more generally, it is a good instrument for delivering algorithms and systems able to
satisfy customer expectations.
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Abstract: In the recent years, technology advances in sensors and image processing have allowed
significant improvements that encompass not only quality, but also image content analysis and
understanding. Consumer devices are now being equipped with sophisticated algorithms allowing
complex tasks such as face recognition, smile detection, automatic red eye removal, etc. In addi-
tion, topics related to image forensics oriented to verify the authenticity of digital images, such as
camera identification and image manipulation detection are now available. This Chapter provides
an overview of the main topics representing a challenge to innovation both from hardware and
software point of view: Super Resolution, Temporal Demosaicing, Bracketing or High Dynamic
Range Reconstruction. Also some aspects of Computational Photography and Forensics Camera
Identification are briefly described. These topics represent the current trends and novel solutions
for the next generation of imaging devices.

13.1 Super Resolution

Quality improvement is obtained by increasing the resolution of the sensor and/or by
using more sophisticated image-processing algorithms. But for specific application (e.g.,
mobile imaging) there are too many constraints to manage in terms of power consumption,
DSP capabilities, etc. Best quality image acquisition with low cost is thus necessary. The
main objective is to obtain from a low cost image sensor a High-Resolution (HR) image
in a relatively short time. Zooming algorithms usually interpolate ”new artificial” intra-
pixel information to expand the images resolution. Simple interpolation is not well suited
to generate resolution-enhanced images. Super Resolution techniques aim to insert ”real”
intra-pixel information to obtain the true matching scene.

There are different mathematical approaches to solve this problem [1]. Almost all
of them merge in a proper way non-redundant image information combining multiple
frames. Obviously, if successive frames are exact copies, no new information is available.
It is important to treat properly each particular feature (e.g., object boundaries that will
not be at the same pixel locations in successive frames). In this way it is possible to
extract more information with respect to the original data available in each single Low-
Resolution (LR) image.

One of the LR input images is considered as reference frame; this is named the pri-
mary image and typically is the central image of the sequence. The reference frame is
expanded in a high-resolution grid (e.g., a 640x480 pixel LR image is expanded to a
1280x960 pixel image). The complementary pixels, introduced by the expansion, could
be derived using classical interpolation approaches (Bilinear, Bicubic), without changing
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the effective ”resolution”. A more accurate HR image can be obtained properly using the
data from the other LR frames.

Classical Super Resolution approaches are mainly based on frequency domain, bayesian
methods and reconstruction methods.

13.1.1 Frequency Domain Methods

One of the first frequency domain based algorithm was presented by Tsai and Huang [2].
Such method is based on three fundamental principles:

• The shifting property of the Fourier Transform (FT);

• The aliasing relationship between the Continuous Fourier Transform (CFT) and the
Discrete Fourier Transform (DFT);

• The original scene is band-limited.

Unlike all other methods, the data are first transformed to the frequency domain where
they are combined together (see Fig.(13.1)). This data are then transformed back into
spatial domain where the new image will have a higher resolution than the original frames.
The frequency domain methods do not reach good results for real image sequences and
moreover these methods are computationally expensive for embedded imaging devices.

Recently, some improvements have been introduced, taking into account a non-band-
limited stationary spectral model to reconstruct the HR image [3].

Figure 13.1 : Classical frequency domain Super Resolution approach.
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13.1.2 Statistical Methods

Bayesian methods for HR image reconstruction use a statistical a priori model combined
with maximum a posteriori (MAP) or maximum likelihood (ML) formulation for HR
reconstruction. Bayes’ theorem gives the rule for updating belief in a hypothesis A (i.e.,
the probability of A) given additional evidence B, and background information (context)
c:

p(A/B,c) =
p(A/c)∗ p(B/A,c)

p(B/c)
(13.1)

An example of Bayesian approach is given in [4]. NASA researchers use Bayesian
theory for constructing super-resolved surface models by combining information from a
set of LR images. The basic idea behind NASA approach is based on inverse graphics.
That is, if it’s known what the ground is like, the lighting conditions, the camera orienta-
tion and characteristics, etc., then it is possible to predict what the camera would see (an
image). However, the problem is here inverted: it is known what the images are, and it
must be found the most probable ground truth (surface) that would have generated them,
assuming that the lighting conditions and camera characteristics are known. The most im-
portant (and difficult) part of this process is the recovering of the camera orientation and
position for each image. To do this, all the images must be registered with respect to each
other by accuracy of small fraction of pixel; this registration clarifies how an image map
is built onto the ground truth model. The initial ground model is formed by consenting to
each pixel ”to vote” on how much that ground position contributed to that pixel. This ini-
tial ground model is then used to project what each image should be (i.e., to predict each
pixel value). The difference between the predicted pixel value and the observed value
is used to update the ground model until it cannot be further improved. This procedure
increases both spatial and luminance resolution.

13.1.3 Reconstruction Methods

In the methods of this class, both observation model and reconstruction are accomplished
in the spatial domain. These approaches use a model relating the LR images to the desired
HR image by iterative reconstruction techniques useful to estimate the HR image. The
main advantage of this approach is the ability of modeling more realistic video formu-
lation process and the flexibility of applying different iterative methods to estimate HR
image. Below some of the most popular approaches are described.

Projection Onto Convex Sets: The POCS [5,6] method requires the definition of closed
convex constraint sets within a well-defined vector space that contains the actual HR
image. An estimation of the HR image is then defined as a point in the intersection
of these constraint sets, and is determined by successive projecting an arbitrary initial
assessment onto the constraint sets.

A projection operator P is associated with each constraint set, mapping an arbitrary
point within the space to the closest point within the set. The Convex Sets are defined in
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the following way:

Ctr(m1,m2,k) =
{

y(n1,n2, tr) : |r(y)(m1,m2,k)| ≤ δ0(m1,m2,k)
}

(13.2)

For each pixel within the LR image sequence g(m1,m2,k), where k is the fixed frame
number at time tr and

r(y)(m1,m2,k) = g(m1,m2,k)− ∑
(n1,n2)

y(n1,n2, tr) ·htr (n1,n2,m1,m2,k) (13.3)

is the residual associated with an arbitrary member y of the constraint set. These sets are
referred to as the data consistency constraint sets. Sets Ctr(m1,m2,k) can be defined only
where the motion information is accurate. Therefore it is simple to incorporate occlusion
and uncovered background knowledge by only defining sets for appropriate observations.
The quantity δ0(m1,m2,k) is a bound reflecting the statistical confidence.

Once Convex Sets are defined, for an arbitrary high resolution image, the Projection
operator is constructed as follow:

Ptr(m1,m2,k)[y(n1,n2, tr)] = y(n1,n2, tr)+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(r(y)(�)−δ0(�))htr (n1,n2,�)
∑o1 ∑o2

h2
tr (o1,o2,�)

,r(y)(�) > δ0(�).

(r(y)(�)+δ0(�))htr (n1,n2,�)
∑o1 ∑o2

h2
tr (o1,o2,�)

,r(y)(�) < −δ0(�)

0, else
(13.4)

where “�” function argument is interpreted as ”m1,m2,k”, o1 and o2 denote the htr blur
function support in y(n1,n2, tr) referring to lower image frame k at pixel (m1,m2). Ad-
ditional constraint CA (bounded amplitude and positivity) can be utilized to improve the
results.

Given the above projections, an estimate, f̃ (n1,n2, tr), of the HR image f (n1,n2, tr),
is obtained iteratively from all LR images g(m1,m2,k) :

f̃l+1(n1,n2, tr) = TAT̃ [ f̃l(n1,n2, tr)] f or l = 0,1,2, ... (13.5)

where TA is the relaxed projection operator of CA and T̃ denotes the composition of the
relaxed projection operators onto the family of sets Ctr(m1,m2,k). The initial estimation
f̃0(n1,n2, tr) is obtained by interpolating the LR images, through a bilinear approach, to
HR image size, taking also into account the motion compensation among the LR images.
In theory, iterations continue until an assessment lies within the intersection of all the
constraint sets. In practice, however, iterations are generally terminated according to a
certain stopping criterion such as visual inspection of the image quality. A visual exam-
ple of a POCS Super Resolution result is shown in Fig.(13.2).

Simple Back-Projection This iterative process was introduced by Michal Irani and Sch-
muel Peleg [7, 8]. This technique uses averaged projections in HR grid to iteratively
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(a)

(b)

Figure 13.2 : Example of Super Resolution POCS based: (a) represents one of the low
resolution frames (upsampled by using a simple nearest-neighbor approach) and (b) the
resulting Super Resolution frame.

Beyond Embedded Device Image Processing for Embedded Devices   347 

   



Reconstructed HR Image Origina

Simulated 
Imaging
ProcessProcess

Simulated
Low-resolution 

Frames

Observe
Low-resolu

Frames

Compare simulated and observed Low-resolu

Error
Correction

l Image

Imaging
Process

ed
ution
s

ution frames.

Figure 13.3 : Standard diagram of a Back-Projection approach.

estimate the HR image. This algorithm considers also translational and rotational motion
among LR frames.

The approach of back projection method is based on the comparison between the
known LR frames and the simulated LR frames, generated from the computed HR image
(see Fig.(13.3)). The low-resolution pixel is a “projection”, in HR grid, of a region in the
scene whose size is determined by the imaging blur.

The imaging process, yielding the observed image sequence {gk} is modeled by:

gk(m,n) = σk(h( f (x,y))+ηk(x,y)) (13.6)

where gk is the k-th observed image frame, f is the original scene, h is the blurring oper-
ator, ηk is an additive noise term, σk is a non-linear function that digitizes and decimates
the image into pixels and quantizes the resulting pixels values from intensities into gray
levels, σk also includes the displacement from the k-th frame, (x,y) is the center in the
receptive field (in f ) of the detector whose output is gk(m,n).

Starting from an initial guess f (0) of the HR image, the imaging process is simulated
to obtain a set of LR images {g(0)

k } corresponding to the observed input image {gk}.

If f (0) is the correct high-resolution image, then simulated LR frames {g(0)
k } must be

identical to the observed {gk}. The difference images {gk −g(0)
k } are then computed and

used to improve the initial guess by “back-projecting” each value of the difference images
onto its receptive field in f (0). The process is repeated iteratively to minimize the error
function:

e(n) =

√
∑
k

∑
(x,y)

(
gk(x,y)−g(n)

k (x,y)
)2

(13.7)
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The imaging process of gk at the n-th iteration is simulated by:

g(n)
k = Tk( f (n)∗h) ↓ s (13.8)

where Tk represents the degradation model, ↓ s denotes a downsampling operation by
a factor s, and ∗ is the convolution operator. The iterative update scheme of the high-
resolution images is expressed by:

f (n+1) = f (n) +
1
K

K

∑
k=1

T−1
k (((gk −g(n)

k ) ↑ s)∗hBP) (13.9)

where K is the number of LR frames, ↑ s is an upsampling operation by factor s, and hBP
is a “back-projection” kernel, determined by h and Tk. The mean value taken in this last
equation reduces additive noise. More details are available in [9].

This technique is suitable for still picture Super Resolution. In other words, if no
objects are moving into the scene and the frames represents the same scene with different
translations and rotations. An example, which describes the increased resolution obtained
from a sequence of LR images, heavily compressed, is shown in Fig.(13.4).

(a) (b)

Figure 13.4 : Example of an image of a low resolution sequence (a) captured at a very
low bit rate (here upsampled by using a simple nearest-neighbor approach to match the
same resolution) and combined into a Super Resolution frame (b) using the simple back
projection approach combined with a global motion estimator.

Beyond Embedded Device Image Processing for Embedded Devices   349 

   



13.1.4 Temporal Demosaicing
As described in Chapter 7 the demosaicing is the process of color interpolation, which
permits to reconstruct the missing RGB values that have not been captured by imaging
sensor (i.e., usually acquires only Bayer CFA data). The temporal demosaicing is in a
similar way a process of color interpolation, through spatial correlations, but also through
temporal correlations coming from multiple frames. By taking into account multiple
frames, to generate a single image, the temporal demosaicing is a particular case of Super
Resolution.

There is a growing interest in multi-frame demosaicing, mainly because it can permit
to increase the effective information (i.e., augmenting in some sense the sampling char-
acteristic) of the device, without increasing its effective resolution. This means also less
noise and more luminance sensitivity.

An interesting work from Farsiu et al. [10], has explained the reason of applying
simultaneously demosaicing and Super Resolution. The main problems of performing
Super Resolution on Bayer data are due to lacking values, the LR data missing from the
merged HR Bayer pattern. Furthermore the problem of achieving by first demosaicing and
then Super Resolution is clearly due to loss of real information from original Bayer data.
The authors by first estimate the following image formation model (shown in Fig.(13.5)):

Yi(k) = Ai(k)Di(k)H(k)F(k)Xi +Vi(k) k = 1, ...,N (13.10)

where i ∈ R,G,B, k represents the number of the LR frame, Xi is the intensity distribu-
tion of the scene, Vi is the additive noise, Yi is the resulting color filtered LR image and
the operators F , H, D and A are respectively the warping, blurring, down-sampling and
color-filtering processes. The authors use a Maximum A Posteriori (MAP) model to re-
construct the HR demosaiced image. In details, they apply the global assumption about
the correlation between color channels and spatial correlation, by using the following
penalty function:

Ω(X) = J1(X ,Y (k))+P1(X)+P2(X)+P3(X) (13.11)

which means that the estimation Ω of the HR image X is obtained by minimizing a cost
function of the Data Fidelity Term (J) and three Prior Information Terms P1 (spatial lu-
minance penalty term), P2 (spatial chrominance penalty term) and P3 (inter-color depen-
dencies penalty term). With the Steepest Descent (SD) method, the n + 1th estimate is
obtained by updating the previous one utilizing the derivative of Ω(X). For further details
see [10].

A simplest approach to temporal demosaicing has been presented by Wau and Zhang
[11]. The authors estimate the motion by working on frames that have been already
reconstructed by an intra-frame demosaicing method (on the G channel). Then a temporal
enhancement is achieved on the resulting G channel by using the following weighting
function:

Ĝ =
K

∑
i=0

wiG̃ (13.12)
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Figure 13.5 : The image formation model described by [10].

where Ĝ is the estimate of G and G̃ = G + ei for i ∈ 0, ...,K represents the sum of
the unknown value G plus the error ei. The weight used in the estimation is identified by
minimizing a computed weighting function (see [11] for details). Once the Green channel
has been completely estimated the Red and Blue channel are spatially demosaiced and
thus a similar temporal enhancement is achieved on these channels.

13.1.5 Single Frame Super Resolution
Three complementary ways exist for increasing an image’s apparent resolution:

• Aggregating from multiple frames. Extracting a single HR image from a sequence
of LR frames adds value and is referred as multiple frame Super Resolution (as
described in the previous Sections).

• Sharpening by amplifying existing image details. This is the change in the spa-
tial frequency amplitude spectrum of an image associated with image sharpening.
Existing high frequencies in the image are amplified. The main issues of such ap-
proach are the presence of ringing along edges and amplification of noise.

• Single-frame Super Resolution. The goal of such approach is to estimate missing
high resolution details that are not present in the original image, and which can not
make visible by simple sharpening.

Different approaches are present in literature [12–14] and are focused on specific field.
For instance Backer and Kanade [14] focus their approach on ”Hallucinating Faces”, this
is the specific terms they have used to illustrated their single image Super Resolution for
face enlargement. In practice they use a dataset of registered and resampled faces, and
through a super-resolution algorithm that uses the information contained in a collection
of recognition decisions (in addition to the reconstruction constraints) they create an high
resolution face. In effect such approach works only if the image that must be reconstructed
is of the same nature of the information contained into the recognition decisions (see
Fig.(13.6)).

Freeman et al. [12] use a training set of a not fixed nature to achieve their example-
based Super Resolution. Such approach is characterized by a first training step which
define rules to associate low resolution patches to high resolution ones. To perform such
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step they use the bandpass and contrast normalized version of the low resolution and the
high resolution images respectively. Such patches are stored as a dataset of rules and
processed through a Markov network. The resulting images seem to be sharper, also if
they do not reconstruct exactly high resolution details. This approach is less dependent to
the nature of the image that must be super resolved, but the dimension of the dataset of
patches could be an issue.

(a) (b) (c)

(d) (e) (f)

Figure 13.6 : Hallucination algorithm: (a) a face image of 12x16 pixels and (d) the result-
ing hallucination output; (b) original HR image not containing faces and (e) the resulting
hallucinated image from its LR version; similar result for a neutral grayscale image (c)
and (f) the resulting hallucinated output. As it is clearly visible a face is hallucinated by
the algorithm even when none is present, hence the term ”hallucination algorithm.

The more recent method presented by Glasner et al. [13] propose an unified frame-
work for combining example-based and classical multi-image Super Resolution. This ap-
proach can be applied to obtain Super Resolution from a single image, with no database
or prior examples. The work is based on the observation that patches in a natural image
tend to redundantly recur many times inside the image, both within the same scale, as well
as across different scales. Recurrence of patches within the same image scale (at subpixel
misalignments) gives rise to the classical super-resolution, whereas recurrence of patches
across different scales of the same image gives rise to example-based super-resolution.

The increasing interest of commercial Super Resolution solutions for HD television
has allowed to develop furthermore such approaches. Some companies have manufac-
tured hardware solutions to overcome the problem of compatibilities between old low
resolution broadcasting and new full HD televisions (i.e., NEC Electronics [15]).
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13.2 Bracketing and Advanced Applications
In order to attempt to recover or enhance a badly exposed image, even if some kind
of post-processing is possible, there are situations where this strategy is not possible or
leads to poor results. The problem comes from the fact that badly captured data can be
enhanced, but if no data exists at all there’s nothing to enhance. Today, despite the great
advancements realized by digital photography, which has made available tremendous res-
olution even for mass market oriented products, almost all digital photo-cameras still
deal with limited dynamic range and inadequate data representation, which make critical
lighting situations, and the real world has tons of them, difficult to handle. This is where
multiple exposure capture stands as a useful alternative to overpass actual technology lim-
its. Even if the idea of combining multiple exposed data is just recently receiving great
attention, the methodology itself is very old. In the early sixties, well before the advent of
digital image processing Charles Wyckoff [16] was able to capture high dynamic range
images by using photographic emulsion layers of different sensitivity to light. The infor-
mation coming from each layer was printed on paper using different colors, thus obtaining
a pseudo-color image depiction.

13.2.1 The Sensor Versus The World

Table 13.1 : Typical world luminance levels.

Scene Illumination
Starlight 10−3cd/m2

Moonlight 10−1cd/m2

Indoorlight 102cd/m2

Sunlight 105cd/m2

Dynamic range refers to the ratio of the highest and lowest sensed level of light. For
example, a scene where the quantity of light ranges from 1000 cd/m2 to 0.01 cd/m2, has
a dynamic range of 1000/0.01=100,000. The simultaneous presence in real world scenes
poses great challenges on image capturing devices, where usually the available dynamic
range is not capable to cope with that coming from the outside world. High dynamic
range scenes are not uncommon; imagine a room with a sunlit window, environments
presenting opaque and specular objects and so on. Table 13.1 shows typical luminance
values for different scenes, spanning a very wide range from starlight to sunlight. On the
other side dynamic range (DR) of an imaging device is defined as the ratio between the
maximum charge that the sensor can collect (Full Well Capacity, FWC), and the minimum
charge that is just above sensor noise (Noise Floor, NF).

DR = log10

[
FWC
NF

.

]
. (13.13)
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Figure 13.7 : Due to limited camera dynamic range, only a portion, depending of expo-
sure settings, of the scene can be captured and digitized.

DR values are usually expressed in logarithmic units. This dynamic range, which is sel-
dom in the same order of magnitude of those coming from real world scenes, is further
affected by errors coming from analogue to digital conversion (ADC) of sensed light val-
ues. Once the light values are captured, they are properly quantized to produce digital
codes, that usually for common 8-bit data fall in the [0 : 255] range. This means that a
sampled, coarse representation of the continuously varying light values is produced.

Limited dynamic range and quantization thus irremediably lead to loss of information
and to inadequate data representation. This process is synthetically shown in Fig.(13.7),
where the dynamic range of a scene is converted to the digital data of an imaging device:
only part of the original range is captured, the remaining part is lost. The portion of
the dynamic range where the loss occurs depends on employed exposure settings. Low
exposure settings, by preventing information loss due to saturation of highlights, allow to
capture highlight values, but lower values will be easily overridden by sensor noise. On
the other side, high exposures settings allow a good representation of low light values, but
the higher portion of the scene will be saturated. Once again a graphical representation
gives a good explanation of the different scenarios.

Fig.(13.8(a)) shows a high exposure capture. Only the portion of the scene under the
green area is sensed with a very fine quantization (for simplicity only 8 quantization lev-
els, shown with dotted lines, are supposed), the other portion of the scene is lost due to
saturation which happens at the luminance level corresponding to the end of the green
area. Fig.(13.8(b)) shows a low exposure capture. This time since saturation, which hap-
pens at the light level corresponding to the end of the red area, is less severe due to low
exposure settings and apparently all the scene is captured (the red area). Unfortunately,
due to very widely spanned sampling intervals, quality of captured data is damaged by
quantization noise and errors. To bring together data captured by different exposure set-
tings allows to cover a wider range, and reveal more details than those that would have
been possible by a single shot.
The process is usually conveyed by different steps:

1. camera response function estimation;

2. high dynamic range construction;

3. tone mapping to display or print medium.
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(b) Information loss for low exposure.

Figure 13.8 : Information loss for high and low exposure. In case of high exposure (a),
a limited dynamic range is captured due to saturation. In case of low exposure (b), the
captured data is coarsely quantized. For simplicity, only eight quantization levels are
considered.

13.2.2 Camera Response Function
In order to properly compose a high dynamic range image, using information coming
from multiple low dynamic range (LDR) images, the camera response function must be
known. This function describes the way the camera reacts to changes in exposures, thus
providing digital measurements.

Camera exposure X, which is the quantity of light accumulated by the sensor in a
given time, can be defined as follows:

X = It (13.14)

where I is the irradiance and t the integration time.
When a pixel value Z is produced, it is known that it comes from some scene radiance

I sensed for a given time t, mapped into the digital domain through some function f. Even
if most CCD and CMOS sensors are designed to produce electric charges that are strictly
proportional to the incoming amount of light (up to the near saturation point, where values
are likely to fluctuate), the final mapping is seldom linear. Nonlinearities can come from
the ADC stage, sensor noise, gamma mapping and specific processing introduced by the
manufacturer. In fact often DSC camera have a built-in nonlinear mapping to mimic a
film-like response, which usually produces more appealing images when viewed on low
dynamic displays.

The full pipeline, from the scene to the final pixel values is shown in Fig.(13.9) where
prominent nonlinearities can be introduced in the final, generally unknown, processing.

The most obvious solution to estimate the camera response function, is to use a picture
of uniformly lit different patches, such as the Macbeth Chart [17] and establish the rela-
tionship between known light values and recorded digital pixel codes. However this pro-
cess requires expensive and controlled environment and equipment. This is why several
chartless techniques have been investigated. One of the most flexible algorithms has been
described in [18], which only requires an estimation of exposure ratios between the input
images. Of course, exposure ratios can be derived from exposure times. Given N digi-
tized LDR pictures, representing the same scene and acquired with timings t j : j = 1, ..,N,
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Figure 13.9 : The full pipeline from scene to final digital image. The main problem
behind assembling the high dynamic range from multiple exposures, lies in recovering
the function synthesizing the full process.

exposure ratios R j, j+1 can be easily described as

R j, j+1 =
t j

t j+1
. (13.15)

Thus, the following equation relates the ith pixel of the jth image, Zi j, to the underlying
unknown radiance value Ii

Zi, j = f (Iit j) (13.16)

which is the aforementioned camera response function. The principle of high dynamic
range compositing is the estimation for each pixel, of the radiance values behind it, in
order to obtain a better and more faithful description of the scene that has originated the
images. This means that we are interested in finding the inverse of (13.15): a mapping
from pixel value to radiance value is needed:

g(Zi, j) = f−1(Zi, j) = Iit j (13.17)

The nature of the function g is unknown, the only assumption is that it must be monoton-
ically increasing. That’s why a polynomial function of order K is supposed.

Ie = g(Z) =
K

∑
k=0

ckZk (13.18)

The problem thus becomes the estimation of the order K and the coefficients ck appearing
in (13.18). If the ratios between successive image pairs ( j, j+1) are known, the following
relation holds:

Iit j

Iit j+1
=

g(Zi, j)
g(Zi, j+1)

= R j, j+1 (13.19)

Using (13.19), parameters are estimated by minimizing the following objective function:

O =
N

∑
j=1

P

∑
i=1

[
K

∑
k=0

ckZk
i, j −R j, j+1

K

∑
k=0

ckZk
i, j+1

]2

(13.20)

where N is the number of images and P the number of pixels. The system can be easily
solved by using the least square method. The condition g(1) = 1 is enforced to fix the
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scale of the solution, and different K orders are tested. The K value that better minimizes
the system is retained.

To limit the number of equations to be considered not all pixels of the images should
be used and some kind of selection is advised by respecting the following rules:

1. pixels should be well spatially distributed;

2. pixels should sample the input range;

3. pixels should be picked from low variance (homogenous) areas.

A different approach for feeding the linear system in (13.20) could be done by re-
placing pixel values correspondences by comparagram pairs. Comparagrams have been
well described in [19] and provide an easy way to represent how pixels of one image
are mapped to the same image with different exposure. This mapping is usually called
brightness transfer function (BTF).

It’s worth noting that if direct access to raw data is available, and known to be lin-
ear, the response curve estimation step could be avoided, since in this case the function
equals a simple straight line normalized in the range [0, ..,1]. Fig.(13.10) shows 10 im-
ages captured at different exposure settings, form 1

1600 sec to 1
4 sec, while Fig.(13.11)

shows the recovered response curve on both linear (Fig.(13.11(a))) and logarithmic units
(Fig.(13.11(b))).

13.2.3 High Dynamic Range Image Construction

Once the response function, estimated or at priori known, is at hand the high dynamic
range image, usually referred as radiance map and composed of floating point values
having greater range and tonal resolution than usual low dynamic range (LDR) data, can
be assembled. The principle is that each pixel in each image, provides a more or less ac-
curate estimation of the radiance value of the scene in the specific position. For example,
very low pixel values coming from low exposure images are usually noisy, and thus not
reliable, but the same pixels are likely to be well exposed in images acquired with higher
exposure settings.

Given N images, with exposure ratios ei : i = 1 : N and considering (13.17) the se-
quence

{
g(Zi,1)

t1
,

g(Zi,2)
t2

, ...,
g(Zi,N)

tN

}
of estimates for a pixel in position i is obtained. Differ-

ent estimates should be assembled by means of a weighted average taking into account
reliability of the pixel itself. Of course, the weight should completely discard pixels that
appear as saturated and assign very low weight to pixels whose value is below some noise
floor, since they are unable to provide decent estimation.

One possible weighting function could be a hat or Gaussian shaped function centered
around mid-gray pixel values, which are far from noise and saturation. As a rule of thumb,
for each pixel there should be at least one image providing a useful pixel (e.g., that is
not saturated, nor excessively noisy). Given the weighting function w(Z) the radiance
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Figure 13.10 : A sequence of 11 images, captured at iso 50, f-4, and exposures ranging
from 1

800 to 2 sec.

estimate for a given position i is given by:

Ii =
∑N

j=1 w(Zi, j)
g(Zi, j)

t j

∑N
j=1 w(Zi, j)

(13.21)

13.2.4 The Scene Versus the Display Medium
Once the high dynamic range image has been assembled, what’s usually required is a final
rendering on the display medium, such as a CRT display or a printer. The human eye is
capable of seeing a huge range of luminance intensities, thanks to its capability to adapt
to different values. Unfortunately this is not the way most image rendering systems work.
Hence they are usually not capable to deal with the full dynamic range contained into
images that provide and approximation of real world scenes. Indeed most CRT displays
have a useful dynamic range in the order of nearly 1:100. It’s for sure that in the next
future, high dynamic reproduction devices will be available, but for the moment they are
well far from mass market consumers. Simply stated, tone mapping is the problem of
converting an image containing a large range of numbers, usually expressed in floating
point precision, into a meaningful number of discrete gray levels (usually in the range
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Figure 13.11 : Response curves derived from images depicted in Fig.(13.10).

Figure 13.12 : An HDR image built from the sequences of Fig.(13.10), linearly scaled in
the [0, ...,1] range and quantized to 8 bits.

0, ...,255), that can be used by any imaging device. So, we can formulate the topic as that
of the following quantization problem:

Q(val) = |(N −1) ·F(val)+0.5| (13.22)
F : [Lwmin : Lwmax ] → [0 : 1]

where [Lwmin : Lwmax ] is the input range, N the number of allowed quantization levels,
and F the tone mapping function. A simple linear scaling usually leads to the loss of
a high amount of information on the reproduced image. Fig.(13.12), shows the result
obtained by linearly scaling an high dynamic range image, constructed from the sequence
of Fig.(13.10) using the techniques described above. As it can be seen, only a parts of the
scene are clearly visible, so better alternatives for F are needed.

Two different categories of tone mapping exist:
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1. Tone Reproduction Curve (TRC): the same function is applied for all pixels;

2. Tone Reproduction Operator (TRO): the function acts differently depending on the
value of a specific pixel and its neighbors.

In what follows, several of such techniques will be briefly described and applied on the
input HDR image, assembled from the sequence in Fig.(13.10). The recorded input was
in the range of 0.00011 : 32.

Histogram Adjustment (TRC)

The algorithm described in [20], by G. Ward et al., is based on ideas coming from image
enhancement techniques, specifically histogram equalization. While histogram equaliza-
tion is usually employed to expand contrast images, in this case it is adapted to map the
high dynamic range of the input image within that of the display medium, while preserv-
ing the sensation of contrast. The process starts by computing a downsampled version of
the image, with a resolution that equals to 1 degree of visual angle. Luminance values
of this, so called fovea image, are then converted in the brightness domain, which can
be approximated by computing logarithmic values. For the logarithmically valued image,
an histogram is built, where values between minimum and maximum bounds Lwmin and
Lwmax (of the input radiance map) are equally distributed on the logarithmic scale. Usually

employing around 100 histogram bins each having a size of Δb = log(Lwmax)−log(Lwmin)
100 pro-

vides sufficient resolution. The cumulative distribution function, normalized by the total
number of pixels T , is defined as:

P(b) = ∑
bi<b

f (bi)/T (13.23)

T = ∑
bi

f (bi)

where f (bi) is the frequency count for bin i. The derivative of this function can be ex-
pressed as

∂P(b)
∂b

=
f (b)
T Δb

. (13.24)

Applying a histogram equalization on the input, the result is an image where all brightness
values have equal probability. The equalization formula, which provides a way to map
luminance values to display values, can be expressed as:

log(Ld (x,y)) = log(Ldmin)+(log(Ldmax)− log(Ldmin)) ·P(log ·Lw (x,y)) (13.25)

where Ldmin and Ldmax stay for minimum and maximum display values. This means that the
equalized brightness is fit into the available display dynamic range. Unfortunately naive
equalization, tends to over-exaggerate contrast in correspondence of highly populated
bins (histogram peaks) leading to undesirable effects. To prevent this, a ceiling procedure
is applied on the histogram, imposing that contrast should never exceed those obtained
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Figure 13.13 : Histogram Adjustment mapping.

by a linear mapping. The ceiling can be written in terms of the derivative of the mapping
(which is indicative of contrast):

∂Ld

∂Lw
≤ Ld

Lw
. (13.26)

By putting together (13.24) and (13.25) the final histogram constraint is obtained:

f (b) ≤ T Δb
(log(Ldmax)− log(Ldin))

. (13.27)

Thus in order to prevent excessive contrast, histogram values are repetitively cut to
satisfy (13.27). The operator has been further refined by the authors to include more
sophisticated ceiling procedure, simulation of color and contrast sensitivity, according to
some features of the human visual system (HVS). Fig.(13.13) shows the example radiance
map, tonemapped to display using Ward’s operator in its basic implementation.

Fast Tone Mapping for High Dynamic Range Image Visualization (TRC)

Another histogram based technique (and somehow similar to the Ward’s approach) has
been described in [21] by J. Duan et al., which the authors deliberately describe as a
visualization tool for high dynamic range images. The authors, correctly, claim that image
reproduction is strictly device dependent (with display calibration being the main issue),
and thus aim to provide a technique that allows the user to quickly display image content
while allowing a good deal of flexibility in brightness and contrast parameters tuning,
which can be intuitively changed ”on the fly”. The technique is a two-phase process,
where the first one scales the range of the input image Lw within display allowed values
and sets the amount of brightness, while the second one tunes the amount of final contrast:

1. luminance mapping;
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2. adaptive histogram adjustment.

The first phase is carried out by means of the following logarithmic/linear scaling,
where τ = α (Lwmax −Lwmin):

Ld (x,y) = (Ldmax −Ldmin) ·
log(Lw (x,y)+ τ)− log(Lwin + τ)
log(Lwmax + τ)− log(Lwmin + τ)

+Ldmax . (13.28)

The parameter α tunes the brightness settings, with low parameters allocating more
input values to the upper range of the display capacity, thus producing bright images, and
vice versa.

In order to better distribute the final image values inside the display range a controlled
equalization is applied by balancing between uniform quantization, no equalization at all,
and full equalization. In the first case, given N available display digital values, the output
range of (13.28) is divided into N equally spaced intervals, where all pixels falling inside
[li−1, li] are assigned the same value i. In the case of histogram equalization, instead, the
quantization intervals are not uniform, but the number of pixels falling into each interval,
[ei−1,ei] is the same. Once again pixels inside [ei−1,ei] are assigned to the digital value
i. The balancing is achieved by dividing the output range of (13.28) into N [eli−1,eli]
intervals according to the following equation:

eli = li +βei, i = 1,2, ...,N. (13.29)

By varying the β value in the range [0,1] the user can vary the image visualization
between no equalization and full equalization. Fig.(13.14(a)) and Fig.(13.14(b)), show
two visualizations with different α settings, while β remains unchanged.

(a) α = 0.25,β = 2.0 (b) α = 0.75,β = 2.0

Figure 13.14 : Image visualized with two different α values (0.25 and 0.75), and same β
value, (2.0) to show the brightness effect.
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Bilateral Filtering (TRO)

Durand et al. in [22] consider the input image as separable into two different layers: a
base layer and a detail layer. The first is related to the low frequency content of the
image and the second to the high frequency content. Thus an input image Lw(x,y) can be
expressed as the multiplication of its two layers: Lw(x,y) = Base(x,y) ·Detail(x,y). In
order to properly scale the high dynamic range data, the base layer is feed to a compressive
function, while the detail layer is leaved unchanged. This helps the preservation of subtle
local contrast, and is also related to the concept that the base layer represents the influence
of lighting conditions (and thus the scene dynamic range). All the processing is done in
the logarithmic domain, where the two layers are separated, processed and recombined.
The basic steps of the algorithm are:

1. express the data in the logarithmic domain l(x,y) = log(Lw(x,y));

2. compute the base layer Base(x,y);

3. compute the detail layer Detail(x,y) = Base(x,y)− l(x,y);

4. compress the base layer obtaining comp(Base(x,y));

5. recombine the layers and exponentiate the result, to produce the final image,
Ld(x,y) = exp(comp(Base(x,y))+Detail(x,y)).

The compression of the base layer is simply done by scaling it by a multiplicative factor
m, such that its range equals a desired contrast c:

comp(Base(x,y)) = m ·Base(x,y), (13.30)

such that
m · (max(Base(x,y))−min(Base(x,y))) = c. (13.31)

The most relevant feature of the algorithm is the way in which the base layer is computed,
which should be a low pass filtered version of the image, but without the unwanted issues
of the Gaussian filtering employed by the aforementioned Chiu’s algorithm. In other
words the low pass filtering process should not consider for each pixel, those luminance
values that are far from the luminance of the pixel itself. To achieve this, a bilateral filter
is considered. Bilateral filtering bil(x,y) is obtained by adding to usual gaussian filter with
a spatial kernel g, a further Gaussian weighting function w, whose weights decrease as the
difference in luminance value between the central pixel and its neighbors in a surround Ω
increase.

bil(x,y) =
1

k(x,y) ∑
(u,v)∈Ω

g(x−u,y− v) · l(u,v) ·w(d(l(u,v), l(x,y))),

d(u,v) = |l(u,v)− l(x,y)| (13.32)

where k(x,y) is the normalization term. Since bilateral filtering in the spatial domain can
be computationally very slow, the authors have developed a very fast approximation in
the frequency domain. Fig.(13.15) shows the result of the algorithm (c = log(50)) on the
input image.
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Figure 13.15 : Image mapped with bilateral filtering.

Photographic Tone Reproduction (TRO)

Reinhard et al. [23] have developed an operator based on some simple photographic prin-
ciples such as automatic exposure and dodge and burning, where the first provides a
global mapping of the image and the latter exploits some local features. The global part
of the operator analyzes the concept of scene’s key, which is measure of how overall dark
or bright the images is. This quantity is approximated with the log average value Lw of
the image luminance values. According to photographic principles, where the key is usu-
ally printed (or displayed) to have the 18% reflectance of the medium, an initial global
mapping is performed using the following equation:

Lm (x,y) =
0.18
Lw

·Lw (x,y) . (13.33)

In this way a kind of automatic exposure setting is provided for the scene, even it is
done ex post facto, since the scene has already been captured by the camera (but, since
radiance maps provide a floating point description of the initial scene, this allow us to
do such virtualizations of the photographic process). Even if in (13.33), the scene’s key
value is linearly mapped to the value of 0.18, different values could be used depending
on the specific image content (e.g., a nightlife picture should be scaled to a very low
value). No matter what the dynamic range of the initial scene is, the luminance values
exposed by means of (13.33) are forced to fit inside the medium dynamic range (which is
here supposed to vary within [0, ..,1]) using a compressive function, which is particularly
effective on very high luminance values:

Ld(x,y) =
Lm(x,y)

1+Lm(x,y)
. (13.34)

This function scales input values differently, according to their magnitude: small values,
usually � 1 are almost leaved unchanged, while very high values , usually 	 1, are scaled
by a very large amount (the quantity 1

Lm(x,y)).
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The scaling function, is further refined to include some local processing, similar
to dodge and burning procedures, where a dark value in a bright surround is heav-
ily compressed (burned), and a bright pixel on a dark surround is only mildly com-
pressed (dodged). To exploit these local properties, filtered versions at different scales
s = 1,2, ...,S of Lm are produced as

Lblurs = Lm ∗Rs (13.35)

and in (13.34) the quantity Lm(x,y) on the denominator, is replaced by

Ld(x,y) =
Lm(x,y)

1+Lblurs(x,y)
(13.36)

where ∗ equals to the convolution operator, and Rs are different Gaussian kernels, having
different pixel widths w(s), for s = 1,2, ...,S

w(s) = elog(wmin)+ s
S ·(log(wmax)−log(wmin)). (13.37)

the term wmax and wmin are the maximum and minimum allowed pixel widths, and are
fixed respectively to 1 and 43. Thus the smallest scale for a pixel in position (x,y)
equals to the pixel itself. To avoid halo artifacts, for each pixel the largest scale smax :
|Vsmax(x,y)| < ε , where Vs is the difference between two successive scales, is computed
as:

Vs(x,y) =
Lblurs −Lblurs+1

2Φ ·0.18/s2 +Lblurs

. (13.38)

According to the authors a value of Φ = 8 is used. Practically (13.38) is the search of
the largest surround across a pixel in position (x,y) whose value is reasonably similar to
that of the pixel. This avoids the appearance of severe halo artifacts, similar to those seen
by the application of Chiu’s algorithm. Fig.(13.16) shows the result of the algorithm of
Reinhard et al. on our example radiance map, where the parameters S = 8,Φ = 8 have
been used.

Gradient Compression (TRO)

The last technique, belonging to the family of TRO, that we are going to describe was
developed by Fattal et al. [24], and it’s far more sophisticated than those that have been
described hereof. Even if sometimes output images can have an unnatural appearance,
in most cases results can look very appealing. This algorithm doesn’t operate directly on
the spatial domain, but instead computes the gradient field of the input image and after
manipulating it, reconstructs by means of Poisson integration the image having the new
gradients. This derives from the observation that an image exhibiting an high dynamic
range, will be characterized by gradients of large magnitude around zones of brightness
transition. Hence attenuating those gradients seems like a viable way for building a LDR
depiction of the scene, suitable to be viewed on a common display. Similarly to the
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Figure 13.16 : Photographic Tone Reproduction mapping.

pipeline of the algorithm based on bilateral filtering, gradient compression works on log-
arithmic data, and so just before producing the output image, the result undergoes expo-
nentiation. Indicating with l(x,y) the data in the logarithmic domain, the gradient field
∇l(x,y) is computed as follows:

∇l(x,y) = (l(x+1,y)− l(x,y), l(x,y+1)− l(x,y)) (13.39)

Attenuation of the gradient field is obtained by multiplication with a proper scaling func-
tion Φ(x,y):

G(x,y) = ∇l(x,y) ·Φ(x,y). (13.40)

The attenuated gradient field G(x,y) is then inverted by solving the Poisson equation

∇2 l̃(x,y) = div G(x,y). (13.41)

Since edges (and thus gradients) exist at multiple resolution levels, a Gaussian pyramid
representation < l0, l1, ..., lS > is constructed, and for each level the gradient field is com-
puted. The attenuation function is then computed on each level and reported to the upper
level in bottom to top fashion. The attenuation function at the top level is the one that
will be effectively used in (13.40). Attenuation function at each level s is computed as
follows:

Ψs(x,y) =
α

||∇ls(x,y)|| ·
( ||∇ls(x,y)||

α

)β
. (13.42)

The α parameter in 13.42 determines which gradient magnitudes are leaved untouched,
while the β exponent amplifies magnitudes greater than α . Suggested values are α =
0.1·(average gradient magnitude) and β = 0.9. Since the attenuation function is com-
puted for each resolution level s, the propagation to full resolution is done by scaling the
attenuation function from level s− 1 to s, and accumulating the values to obtain the full
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resolution attenuation function Φ(x,y) that will be effectively used (authors claim that by
using the attenuation function just at full resolution halo artifacts are mostly invisible).
This can be expressed by the following equations:

Φd (x,y) = Ψd(x,y) (13.43)
Φk (x,y) = L(Φk+1)(x,y) ·Ψd(x,y)

Φ(x,y) = Φ0(x,y)

where d is the smallest resolution level and L is the bilinear up-sampling operator. Fig.(13.17)
shows the result of applying the gradient compression operator on our sample HDR im-
age. The operator looks computationally more complicated than others that have been
described but as it can be seen the mapped image looks far more impressive, in terms of
high-light and low-light visibility, than the previous renderings.

Figure 13.17 : Gradient Compression mapping.

13.3 Computational Photography
Traditional digital cameras coupled with the latest computational methods in digital imag-
ing overcome the traditional limitations of a camera and enable novel imaging applica-
tions [25]. The so-called computational photography extends digital photography because
it records much more information than before and offers the possibility to process it. The
final output is yet an ordinary picture, but one that could not have been taken by a tradi-
tional camera. A novel way to exploit the fruition of the information coming from the real
world is hence possible. The term was used in the current definition, from a 2004 course
at Stanford University; it has rapidly evolved to cover a number of subject areas in Com-
puter Graphics, Computer Vision, and Applied Optics. In particular several sub-topics
can be identified according to the following list:
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• Computational illumination that includes flash/no-flash imaging, multi-flash imag-
ing, different exposures imaging, image-based relighting and other uses of struc-
tured illumination.

• Computational optics devoted to capture optically coded images, followed by com-
putational decoding to produce new images. Coded aperture imaging is used to
boost the image quality just making use of a pinhole pattern (not a single pin-hole),
while deconvolution is performed to recover the image. In coded exposure imaging,
the on/off state of the shutter is coded to modify the kernel of motion blur just to
be able to make tractable the motion deblurring problem. Similarly, in a lens based
coded aperture, the aperture can be modified by inserting a broadband mask. Thus,
out of focus deblurring becomes a well-conditioned problem. The coded aperture
can also improve the quality in light field acquisition using Hadamard transform
optics. Some of the involved issues are: coded aperture imaging, coded exposure
imaging, light field photography, catadioptric imaging, wavefront coding, compres-
sive imaging.

• Computational processing of non-optically coded images to produce new images is
mainly referred to the following arguments: panorama mosaicing, matte extraction,
digital photomontage, high dynamic range imaging, all-focused imaging.

• Computational sensors treat detectors that combine sensing and processing, typi-
cally in hardware as: artificial retinas, high dynamic range sensors, retinex sensors.

(a) (b) (c) (d)

(e) (f)

Figure 13.18 : Multiple picture fusion.
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Recently a lot of material has been presented at major international conferences (e.g.,
SIGRAPH07, SIGRAPH08, etc.). For more details see [26,27]. Just to provide an exam-
ple of the great expectation about this new exciting field we cite the work [28] where a
framework is proposed for automatically enhancing the spatial and/or temporal resolution
of videos (usually in low resolution) of a static scene using a few photographs of the same
scene (usually in high resolution).

To conclude this Section we mention an interesting project [29] that has as main goal
the realization of a new open source camera platform with sufficient power computing to
implement some of the new trends in the field. The project is also devoted to exploit the
possibility to develop effective (and profitable) computational photography applications
for commercially available mobile phones.

In Fig.(13.18) two examples of multi picture acquisition of the same scene that al-
lowed to obtain enhanced images in term of dynamic range [30] and depth of field are
shown.

13.4 Camera Identification
In Chapter 6 a deep review about the various kinds of noise that affect images acquired by
single-sensor imaging devices due to different causes and modalities has been presented.
While almost all of them should be removed, in some way, to improve the image quality,
there is a specific source of noise that can be used to univocally identify the camera manu-
facturer, model and, with some extents, also the specific camera that has acquired a given
image. Such peculiarity is useful for forensics application devoted to address the camera
source identification but also for tampering detection. Also different copyright related
issues could be interested in using such technology (e.g., device identification, device
linking, recovery of processing history and detection of digital forgeries). Although some
other methods have been recently proposed for camera identification [31], the method
based on the noise intrinsic signature related to the particular camera seems to be very
promising.

In details, the property of imaging sensor used in this case is the photo-response non
uniformity (PRNU), that is intrinsically related with the small variations among indi-
vidual pixels during photons acquisition and subsequent conversion to electrons. The
obtained pattern can be used as a sort of sensor fingerprint, that, acting as an uninten-
tional stochastic spread-spectrum watermark, is able to resist also to heavy processing
(i.e., lossy compression). See [31, 32] for more details.

Given an input image the PRNU can be extracted just removing the other noise com-
ponent of the pattern noise: the fixed pattern noise (FPN) (see Chapter 6). The FPN is
caused by dark currents. It primarily refers to pixel-to-pixel differences when the sensor
array is not exposed to light. Because the FPN is an additive noise, some middle-to high-
end consumer cameras suppress this noise automatically by subtracting a dark frame from
every image they take. FPN also depends on exposure and temperature.

Just having a suitable mathematical model for the overall noise it is possible to filter
out the low frequencies content of the pattern noise maintaining only the pixel non unifor-
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Figure 13.19 : Overall schema of the camera identification by noise signature analysis.

mity (PNU) noise component. Such values are intrinsically related with the manufactur-
ing process of each single sensor and can be used as a signature for camera identification.
Such intrinsic patterns can be estimated from images taken by the camera by averaging
their noise components as shown in Fig.(13.19).

More specifically, it is possible to test the Netherlands Forensic Institute PRNU iden-
tificator [33] that is developed as open-source code.

More recently in [34] the overall process has been improved just introducing some
pre-processing of the input images used in the training phase taking into account several
factors related with weak artifacts of color interpolation, on sensor signal transfer and on
sensor design. In the same paper the same idea is used to detect forgery [35] inside the
image.
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XY Z, 101
ΔE94, 103
χ2 Distance, 253

AF, Auto-focus, 55
APS, Active Pixel Sensor, 19
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Autofocus, 240, 244
AWB, 96
AWGN, Additive White Gaussian Noise, 125, 126

bag of visual words model, 244
Bayes’ theorem, 241
Bhattacharyya coefficient, 253, 254
Bilateral Filtering, 144
binary classifiers, 241, 242, 260
biological vision systems, 239
Bit Rate, 211
Block Matching, 221
blooming, 17

categorization, 239, 240
CCD, Charge Coupled Device, 11, 19
CCT, Correlated Color Temperature, 99
Center-weighted Average Metering, 39
chromatic aberration, 13
Chrominance Noise, 136
CIE, Commission International de l’Eclairage, 101
CIELAB, 206, 208
CIELab, 102
Classification, 213
Classifier, 205
cluster-based LDA, 263–265
clustering, 263, 264
CMOS, Complementary MetalOxideSemiconductor,

11, 20
Color Balancing, 1
Color Cast, 197
color constancy, 243, 266
Color Encoding, 321
Compression, 1
Computer Vision, 239–241, 244, 266
confusion matrix, 261, 265
content-based image retrieval, 240
Contrast, 43

Dark Current Noise, 124
Dark Flash, 214
DCT, 245–248, 250, 260
Demosaicing, 1
Denoising, 1

Depth of Field, 208
Desaturation, 206, 207
detection, 240
Differential Mean Opinion Score (DMOS), 317
dimensional reduction, 241, 265
Discrete Cosine Transform, 240, 244
discriminative classifiers, 242
discriminative methods, 242, 263
DoF, Depth of Field, 55, 59, 62, 83, 85
dof, depth of focus, 59
Double Stimulus Continuous Quality Scale (DSCQS),

316
Double Stimulus Impairment Scale (DSIS), 316
DPCM, 286, 289, 290
DR, Dynamic Range, 121
DRM, Dichromatic Reflection Model, 98
DSC, Digital Still Camera, 55
Dynamic range, 357

EBCOT, 295
Edge Detection, 198
edge orientation, 248
EDoF, Extended Depth of Field, 55, 85, 86
Enhancement, 1
error concealment, 275, 284, 297–299, 301
error detection, 275, 284, 297–299
Exposure Correction, 1
Exposure Time, 208

Face Detection, 200
False Positive, 209
Feature Based Motion Estimator, 227
filter banks, 244
Flash, 193, 198, 208, 214
Flash/no-Flash, 208, 214
Focus, 43
Forward Mapping, 233
FPN, Fixed Pattern Noise, 124
Frame Warping, 219
frequency domain, 244, 247
FSWM, Frequency Selective Weighted Median fil-

ter, 73
Full Reference Metrics (FR), 314
Full Search, 76

gamma, 95
gamut, 94
Gaussian, 207
generative classifiers, 242
generative methods, 242
Golden Eyes, 195
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gray-world, 96

H.263, 280, 281, 283
H.264, 284–286
HCS, Hill Climbing Search, 76
HDR, High Dynamic Range, 11, 28
Heavy Tailed Noise, 129
Histogram Adjustment, 365
histograms of oriented blocks, 244
holistic cues, 239
holistic representation, 240, 244, 246, 247, 250
HSL, 198, 203
Human Visual System, 239, 240
Human Visual System (HVS), 313
HVS, Human Visual System, 95
Hyperfocal distance, 60

Illuminant, 197
image categorization, 239–241, 250
Image Coding, 240, 244
Image Compression, 211
Image Enhancement, 240
Image Generation Pipeline, 239, 242
Image Quality, 313
Imaging Pipeline, 1
imaging pipeline, 239, 243
Impulse Noise Model, spike pixel, dead pixel, 127
Infinite Impulse Response Filter, 229
Inpainting, 207, 211
Inverse Mapping, 233

Jeffrey Divergence, 253
JPEG, 211, 239, 240, 244, 246, 248, 251, 274, 286,

292, 305, 306
JPEG-LS, 286
JPEG2000, 278, 295

K-means, 264
K-nearest neighbors, 244, 250, 252, 254
Kalman Filter, 229
KNN, 250, 252, 254–256

LDA, 263–265
LDR, Low Dynamic Range, 11, 28
leave-one-out cross validation, 250, 252, 264, 265
Lens Aperture, 208
Lightness Perception, 320
Likelihood, 241
Linear Discriminant Analysis, 242, 263
linear discriminant classifier, 240
local dominant orientation, 245–250, 253, 257, 258,

260
local invariant descriptors, 244
Logistic Classification, 242, 252, 255–258

logistic classifier, 240, 244, 255, 256, 260
Luminance Contrast, 326
Luminance Noise, 135

Machine Learning, 239, 240, 244, 266
machine vision systems, 239, 241
Mahalanobis distance, 45
Masking, 331
Matrixing, 1
maximum a posteriori, 256
Maximum Likelihood Estimation, 255
Mean Opinion Score (MOS), 315
Morphological Operators, 198, 204, 208
Motion Estimation, 219
Motion Models, 220
MPEG-4, 282–284, 296, 299, 300
MSE, 318

No Reference Metric (NR), 314
Noise, 208, 211
Noise Estimation, spike pixel, dead pixel, 138

object detection, 240, 266
object recognition, 240
Objective Metric, 318
one-against-all, 242, 244
one-against-one, 242
Opponent Color Space, 324
Outlier Filtering, 226

Pairing Verification, 200
Pattern Recognition, 244
PCA, 264, 265
Peak Signal to Noise Ratio (PSNR), 318
Pearson Correlation Coefficient, 253
Perceptual Objective Metric, 320
Perceptual Objective Metrics, 335
phase detection system, 68
Pipeline Modularity, 1
Pixel, Picture Element, 11
Pooling, 335
Post-Processing, 193
Pre-Flash, 193
Predicted Differential Mean Opinion Score (pDMOS),

318
Principal Component Analysis, 241, 264
PRNU, Pixel Response Non Uniformity, 124
PSF, Point Spread Function, 61, 85
PSN, Photon Shot Noise, 122
purple fringing, 16
PVC, 289
PVQ, 289

Quantization Noise, 124
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Rate-Distortion, 295
raw data, 277
Readout Noise, 124
Red Eyes, 193
red-eye detection, 239, 262, 266
Redness Map, 198
Reduced Reference Metric (RR), 314
reflectance, 93
Reset Noise, 124
Resolution, 198
RGB, 197, 203
RIP, Rotation In Plane, 83
ROI, 198
ROP, Rotation Out of Plane, 83

Saliency, 334
scene recognition, 239, 240, 242–244, 247, 266
Segmentation, 210
Semi Local Masking , 339
Sigma-Filter, 143
similarity measure, 252–254
Simultaneous Double Stimulus for Continuous Eval-

uation, 317
single sensor imaging devices, 239, 240, 242, 244,

246, 254, 266
Single Stimulus Continuous Quality Evaluations (SS-

CQE), 316
Skin Detection, 45, 196, 198
skin tone, 109
SLR, Single Lens Reflex, 11, 55, 68
SML, Sum-Modified Laplacian, 74
SMLF, Sum-Modified Laplacian Focus measure, 74
SNR, Signal to Noise Ratio, 121
spatial constraints, 244
spatial layout, 244
spectral signatures, 244
Square Difference Distance, 253
sRGB, 95, 104
statistics of natural images, 244
Structural Similarity Index Metric (SSIM), 337
Subjective Metric, 314
supervised learning, 241

Template, 198
Temporal (Random) Noise, 124
Temporal Filtering, 146
training set, 241, 255, 257, 258, 261, 265

Universal Index Quality (UIQ), 336
Unwanted Movement Detection, 219

Vector Quantization, 286
Video Stabilization, 219

Vision, 239
Visual Attention, 334
Visual Categorization, 239
visual content, 239, 240
Visual Quality Expert Group (VQEG), 315
visual vocabulary, 244, 247

WDR, Wide Dynamic Range, 11, 28
Weighted Euclidean Distance, 253
White Balance, 240, 244
white patch, 97

YCC, 198

Zone System, 38
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